BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 23864712)

  • 1. UDP-glucose:glycoprotein glucosyltransferase (UGGT1) promotes substrate solubility in the endoplasmic reticulum.
    Ferris SP; Jaber NS; Molinari M; Arvan P; Kaufman RJ
    Mol Biol Cell; 2013 Sep; 24(17):2597-608. PubMed ID: 23864712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organizational diversity among distinct glycoprotein endoplasmic reticulum-associated degradation programs.
    Cabral CM; Liu Y; Moremen KW; Sifers RN
    Mol Biol Cell; 2002 Aug; 13(8):2639-50. PubMed ID: 12181335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Approaches to Elucidate Enzymatic Profiles of UDP-Glucose: Glycoprotein Glucosyltransferase.
    Hachisu M; Ito Y
    Chem Pharm Bull (Tokyo); 2016; 64(7):687-90. PubMed ID: 27373624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative glycoproteomics reveals cellular substrate selectivity of the ER protein quality control sensors UGGT1 and UGGT2.
    Adams BM; Canniff NP; Guay KP; Larsen ISB; Hebert DN
    Elife; 2020 Dec; 9():. PubMed ID: 33320095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Herpesvirus 8 Interleukin-6 Interacts with Calnexin Cycle Components and Promotes Protein Folding.
    Chen D; Xiang Q; Nicholas J
    J Virol; 2017 Nov; 91(22):. PubMed ID: 28878084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular association between UDP-glucose:glycoprotein glucosyltransferase and an incompletely folded variant of alpha1-antitrypsin.
    Choudhury P; Liu Y; Bick RJ; Sifers RN
    J Biol Chem; 1997 May; 272(20):13446-51. PubMed ID: 9148970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of domain composition on catalytic activity of human UDP-glucose:glycoprotein glucosyltransferases.
    Takeda Y; Seko A; Fujikawa K; Izumi M; Kajihara Y; Ito Y
    Glycobiology; 2016 Sep; 26(9):999-1006. PubMed ID: 27496766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grp78, Grp94, and Grp170 interact with alpha1-antitrypsin mutants that are retained in the endoplasmic reticulum.
    Schmidt BZ; Perlmutter DH
    Am J Physiol Gastrointest Liver Physiol; 2005 Sep; 289(3):G444-55. PubMed ID: 15845869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-linked sugar-regulated protein folding and quality control in the ER.
    Tannous A; Pisoni GB; Hebert DN; Molinari M
    Semin Cell Dev Biol; 2015 May; 41():79-89. PubMed ID: 25534658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of local glycoprotein misfolding by the ER folding sensor UDP-glucose:glycoprotein glucosyltransferase.
    Ritter C; Helenius A
    Nat Struct Biol; 2000 Apr; 7(4):278-80. PubMed ID: 10742170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calreticulin enhances the secretory trafficking of a misfolded α-1-antitrypsin.
    Mohan HM; Yang B; Dean NA; Raghavan M
    J Biol Chem; 2020 Dec; 295(49):16754-16772. PubMed ID: 32978262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans.
    Hosokawa N; Kamiya Y; Kamiya D; Kato K; Nagata K
    J Biol Chem; 2009 Jun; 284(25):17061-17068. PubMed ID: 19346256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycan structure and site of glycosylation in the ER-resident glycoprotein, uridine 5'-diphosphate-glucose: glycoprotein glucosyltransferases 1 from rat, porcine, bovine, and human.
    Daikoku S; Seko A; Ito Y; Kanie O
    Biochem Biophys Res Commun; 2014 Aug; 451(3):356-60. PubMed ID: 25094044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation.
    Parodi AJ
    Biochem J; 2000 May; 348 Pt 1(Pt 1):1-13. PubMed ID: 10794707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein glucosylation and its role in protein folding.
    Parodi AJ
    Annu Rev Biochem; 2000; 69():69-93. PubMed ID: 10966453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of malectin in Glc(2)Man(9)GlcNAc(2)-dependent quality control of α1-antitrypsin.
    Chen Y; Hu D; Yabe R; Tateno H; Qin SY; Matsumoto N; Hirabayashi J; Yamamoto K
    Mol Biol Cell; 2011 Oct; 22(19):3559-70. PubMed ID: 21813736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ER quality control: towards an understanding at the molecular level.
    Ellgaard L; Helenius A
    Curr Opin Cell Biol; 2001 Aug; 13(4):431-7. PubMed ID: 11454449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of endoplasmic reticulum glucosyltransferase (UGGT): Synthetic chemistry's initiative in glycobiology.
    Ito Y; Takeda Y; Seko A; Izumi M; Kajihara Y
    Semin Cell Dev Biol; 2015 May; 41():90-8. PubMed ID: 25481681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycan dependent refolding activity of ER glucosyltransferase (UGGT).
    Wang N; Seko A; Takeda Y; Ito Y
    Biochim Biophys Acta Gen Subj; 2020 Dec; 1864(12):129709. PubMed ID: 32858085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP.
    Hosokawa N; Wada I; Nagasawa K; Moriyama T; Okawa K; Nagata K
    J Biol Chem; 2008 Jul; 283(30):20914-24. PubMed ID: 18502753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.