These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 23864925)

  • 1. Optofluidics incorporating actively controlled micro- and nano-particles.
    Kayani AA; Khoshmanesh K; Ward SA; Mitchell A; Kalantar-Zadeh K
    Biomicrofluidics; 2012 Sep; 6(3):31501. PubMed ID: 23864925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optofluidic Tweezers: Efficient and Versatile Micro/Nano-Manipulation Tools.
    Zhu Y; You M; Shi Y; Huang H; Wei Z; He T; Xiong S; Wang Z; Cheng X
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the Trajectories of Nano/Micro Particles Using Light-Actuated Marangoni Flow.
    Lv C; Varanakkottu SN; Baier T; Hardt S
    Nano Lett; 2018 Nov; 18(11):6924-6930. PubMed ID: 30285458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optofluidic devices with integrated solid-state nanopores.
    Liu S; Hawkins AR; Schmidt H
    Mikrochim Acta; 2016 Apr; 183(4):1275-1287. PubMed ID: 27046940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic manipulation of particles via transformative optofluidic waveguides.
    Lee KS; Lee KH; Kim SB; Ha BH; Jung JH; Sung HJ; Kim SS
    Sci Rep; 2015 Oct; 5():15170. PubMed ID: 26471003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic devices and applications in photonics, sensing and imaging.
    Pang L; Chen HM; Freeman LM; Fainman Y
    Lab Chip; 2012 Oct; 12(19):3543-51. PubMed ID: 22810383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidics Refractometers.
    Li C; Bai G; Zhang Y; Zhang M; Jian A
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electro-optofluidics: achieving dynamic control on-chip.
    Soltani M; Inman JT; Lipson M; Wang MD
    Opt Express; 2012 Sep; 20(20):22314-26. PubMed ID: 23037380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autonomous and In Situ Ocean Environmental Monitoring on Optofluidic Platform.
    Wang F; Zhu J; Chen L; Zuo Y; Hu X; Yang Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31936398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Developments in Optofluidic Lens Technology.
    Mishra K; van den Ende D; Mugele F
    Micromachines (Basel); 2016 Jun; 7(6):. PubMed ID: 30404276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optofluidic platforms based on surface-enhanced Raman scattering.
    Lim C; Hong J; Chung BG; deMello AJ; Choo J
    Analyst; 2010 May; 135(5):837-44. PubMed ID: 20419230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Fusion of Microfluidics and Optics for On-Chip Detection and Characterization of Microalgae.
    Zheng X; Duan X; Tu X; Jiang S; Song C
    Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optofluidic transport and assembly of nanoparticles using an all-dielectric quasi-BIC metasurface.
    Yang S; Ndukaife JC
    Light Sci Appl; 2023 Jul; 12(1):188. PubMed ID: 37507389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frontiers of optofluidics in synthetic biology.
    Tan C; Lo SJ; LeDuc PR; Cheng CM
    Lab Chip; 2012 Oct; 12(19):3654-65. PubMed ID: 22895798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optofluidic approaches for enhanced microsensor performances.
    Testa G; Persichetti G; Bernini R
    Sensors (Basel); 2014 Dec; 15(1):465-84. PubMed ID: 25558989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond laser processing for optofluidic fabrication.
    Sugioka K; Cheng Y
    Lab Chip; 2012 Oct; 12(19):3576-89. PubMed ID: 22820547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Minderoo-Monaco Commission on Plastics and Human Health.
    Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S
    Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optofluidic in-fiber integrated surface-enhanced Raman spectroscopy detection based on a hollow optical fiber with a suspended core.
    Gao D; Yang X; Teng P; Liu Z; Yang J; Kong D; Zhang J; Luo M; Li Z; Tian F; Yuan L
    Opt Lett; 2019 Nov; 44(21):5173-5176. PubMed ID: 31674959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber Optofluidic Technology Based on Optical Force and Photothermal Effects.
    Zhang C; Xu B; Gong C; Luo J; Zhang Q; Gong Y
    Micromachines (Basel); 2019 Jul; 10(8):. PubMed ID: 31357458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metasurface optofluidics for dynamic control of light fields.
    Li Q; van de Groep J; White AK; Song JH; Longwell SA; Fordyce PM; Quake SR; Kik PG; Brongersma ML
    Nat Nanotechnol; 2022 Oct; 17(10):1097-1103. PubMed ID: 36163507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.