These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
439 related articles for article (PubMed ID: 23865173)
61. Helicoverpa zea and Bt cotton in the United States. Luttrell RG; Jackson RE GM Crops Food; 2012; 3(3):213-27. PubMed ID: 22688690 [TBL] [Abstract][Full Text] [Related]
62. Multi-state trials of Bt sweet corn varieties for control of the corn earworm (Lepidoptera: Noctuidae). Shelton AM; Olmstead DL; Burkness EC; Hutchison WD; Dively G; Welty C; Sparks AN J Econ Entomol; 2013 Oct; 106(5):2151-9. PubMed ID: 24224259 [TBL] [Abstract][Full Text] [Related]
63. Field-evolved resistance to Bt maize by western corn rootworm: predictions from the laboratory and effects in the field. Gassmann AJ J Invertebr Pathol; 2012 Jul; 110(3):287-93. PubMed ID: 22537837 [TBL] [Abstract][Full Text] [Related]
64. Biology, Ecology, and Management of the Diamondback Moth in China. Li Z; Feng X; Liu SS; You M; Furlong MJ Annu Rev Entomol; 2016; 61():277-96. PubMed ID: 26667272 [TBL] [Abstract][Full Text] [Related]
65. Impact of single-gene and dual-gene Bt broccoli on the herbivore Pieris rapae (Lepidoptera: Pieridae) and its pupal endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae). Chen M; Zhao JZ; Shelton AM; Cao J; Earle ED Transgenic Res; 2008 Aug; 17(4):545-55. PubMed ID: 17851777 [TBL] [Abstract][Full Text] [Related]
66. Bt transgenic crops do not have favorable effects on resistant insects. Tabashnik BE; Carrière Y J Insect Sci; 2004; 4():4. PubMed ID: 15861220 [TBL] [Abstract][Full Text] [Related]
67. Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops. Jin L; Zhang H; Lu Y; Yang Y; Wu K; Tabashnik BE; Wu Y Nat Biotechnol; 2015 Feb; 33(2):169-74. PubMed ID: 25503384 [TBL] [Abstract][Full Text] [Related]
68. Inheritance of resistance to Bt canola in a field-derived population of Plutella xylostella. Sayyed AH; Schuler TH; Wright DJ Pest Manag Sci; 2003 Nov; 59(11):1197-202. PubMed ID: 14620045 [TBL] [Abstract][Full Text] [Related]
69. Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm. Chen WB; Lu GQ; Cheng HM; Liu CX; Xiao YT; Xu C; Shen ZC; Soberón M; Bravo A; Wu KM Transgenic Res; 2017 Dec; 26(6):763-774. PubMed ID: 29143178 [TBL] [Abstract][Full Text] [Related]
70. Recent progress on the interaction between insects and Bacillus thuringiensis crops. Xiao Y; Wu K Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180316. PubMed ID: 30967027 [TBL] [Abstract][Full Text] [Related]
71. Tri-trophic studies using Cry1Ac-resistant Plutella xylostella demonstrate no adverse effects of Cry1Ac on the entomopathogenic nematode, Heterorhabditis bacteriophora. Gautam S; Olmstead D; Tian JC; Collins HL; Shelton AM J Econ Entomol; 2014 Feb; 107(1):115-20. PubMed ID: 24665692 [TBL] [Abstract][Full Text] [Related]
72. Combining refuges with transgenic insect releases for the management of an insect pest with non-recessive resistance to Bt crops in agricultural landscapes. Brewer TR; Bonsall MB J Theor Biol; 2021 Jan; 509():110514. PubMed ID: 33053395 [TBL] [Abstract][Full Text] [Related]
73. "Active" refuges can inhibit the evolution of resistance in insects towards transgenic insect-resistant plants. Pittendrigh BR; Gaffney PJ; Huesing JE; Onstad DW; Roush RT; Murdock LL J Theor Biol; 2004 Dec; 231(4):461-74. PubMed ID: 15488524 [TBL] [Abstract][Full Text] [Related]
74. Insecticide Resistance Monitoring of the Diamondback Moth (Lepidoptera: Plutellidae) Populations in China. Wang J; Zheng X; Yuan J; Wang S; Xu B; Wang S; Zhang Y; Wu Q J Econ Entomol; 2021 Jun; 114(3):1282-1290. PubMed ID: 33728433 [TBL] [Abstract][Full Text] [Related]
75. Density Dependence and Growth Rate: Evolutionary Effects on Resistance Development to Bt (Bacillus thuringiensis). Martinez JC; Caprio MA; Friedenberg NA J Econ Entomol; 2018 Feb; 111(1):382-390. PubMed ID: 29281043 [TBL] [Abstract][Full Text] [Related]
76. Dominant point mutation in a tetraspanin gene associated with field-evolved resistance of cotton bollworm to transgenic Bt cotton. Jin L; Wang J; Guan F; Zhang J; Yu S; Liu S; Xue Y; Li L; Wu S; Wang X; Yang Y; Abdelgaffar H; Jurat-Fuentes JL; Tabashnik BE; Wu Y Proc Natl Acad Sci U S A; 2018 Nov; 115(46):11760-11765. PubMed ID: 30381456 [TBL] [Abstract][Full Text] [Related]
77. Effects of seasonal changes in cotton plants on the evolution of resistance to pyramided cotton producing the Bt toxins Cry1Ac and Cry1F in Helicoverpa zea. Carrière Y; Degain BA; Unnithan GC; Harpold VS; Heuberger S; Li X; Tabashnik BE Pest Manag Sci; 2018 Mar; 74(3):627-637. PubMed ID: 28967711 [TBL] [Abstract][Full Text] [Related]
78. Efficacy evaluation of two transgenic maize events expressing fused proteins to CrylAb-susceptible and -resistant Ostrinia furnacalis (Lepidoptera: Crambidae). Chang X; Liu GG; He KL; Shen ZC; Peng YF; Ye GY J Econ Entomol; 2013 Dec; 106(6):2548-56. PubMed ID: 24498757 [TBL] [Abstract][Full Text] [Related]
79. Susceptibility of field populations of the diamondback moth, Plutella xylostella, to a selection of insecticides in Central China. Zhang S; Zhang X; Shen J; Mao K; You H; Li J Pestic Biochem Physiol; 2016 Sep; 132():38-46. PubMed ID: 27521911 [TBL] [Abstract][Full Text] [Related]
80. Insect resistance to Bt crops: lessons from the first billion acres. Tabashnik BE; Brévault T; Carrière Y Nat Biotechnol; 2013 Jun; 31(6):510-21. PubMed ID: 23752438 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]