These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 23865226)
21. Preventing the collapse of the Baltic cod stock through an ecosystem-based management approach. Lindegren M; Möllmann C; Nielsen A; Stenseth NC Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14722-7. PubMed ID: 19706557 [TBL] [Abstract][Full Text] [Related]
22. Climate based multi-year predictions of the Barents Sea cod stock. Årthun M; Bogstad B; Daewel U; Keenlyside NS; Sandø AB; Schrum C; Ottersen G PLoS One; 2018; 13(10):e0206319. PubMed ID: 30356300 [TBL] [Abstract][Full Text] [Related]
23. Spawning stock and recruitment in North Sea cod shaped by food and climate. Olsen EM; Ottersen G; Llope M; Chan KS; Beaugrand G; Stenseth NC Proc Biol Sci; 2011 Feb; 278(1705):504-10. PubMed ID: 20810442 [TBL] [Abstract][Full Text] [Related]
24. Use of existing hydrographic infrastructure to forecast the environmental spawning conditions for Eastern Baltic cod. von Dewitz B; Tamm S; Höflich K; Voss R; Hinrichsen HH PLoS One; 2018; 13(5):e0196477. PubMed ID: 29768443 [TBL] [Abstract][Full Text] [Related]
25. Ocean warming and acidification may drag down the commercial Arctic cod fishery by 2100. Hänsel MC; Schmidt JO; Stiasny MH; Stöven MT; Voss R; Quaas MF PLoS One; 2020; 15(4):e0231589. PubMed ID: 32320411 [TBL] [Abstract][Full Text] [Related]
26. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Bryndum-Buchholz A; Tittensor DP; Blanchard JL; Cheung WWL; Coll M; Galbraith ED; Jennings S; Maury O; Lotze HK Glob Chang Biol; 2019 Feb; 25(2):459-472. PubMed ID: 30408274 [TBL] [Abstract][Full Text] [Related]
27. Archived DNA reveals fisheries and climate induced collapse of a major fishery. Bonanomi S; Pellissier L; Therkildsen NO; Hedeholm RB; Retzel A; Meldrup D; Olsen SM; Nielsen A; Pampoulie C; Hemmer-Hansen J; Wisz MS; Grønkjær P; Nielsen EE Sci Rep; 2015 Oct; 5():15395. PubMed ID: 26489934 [TBL] [Abstract][Full Text] [Related]
28. Predator transitory spillover induces trophic cascades in ecological sinks. Casini M; Blenckner T; Möllmann C; Gårdmark A; Lindegren M; Llope M; Kornilovs G; Plikshs M; Stenseth NC Proc Natl Acad Sci U S A; 2012 May; 109(21):8185-9. PubMed ID: 22505739 [TBL] [Abstract][Full Text] [Related]
29. Interacting trophic forcing and the population dynamics of herring. Lindegren M; Ostman O; Gårdmark A Ecology; 2011 Jul; 92(7):1407-13. PubMed ID: 21870614 [TBL] [Abstract][Full Text] [Related]
30. Effect of a fish stock's demographic structure on offspring survival and sensitivity to climate. Stige LC; Yaragina NA; Langangen Ø; Bogstad B; Stenseth NC; Ottersen G Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1347-1352. PubMed ID: 28115694 [TBL] [Abstract][Full Text] [Related]
31. Could seals prevent cod recovery in the Baltic Sea? MacKenzie BR; Eero M; Ojaveer H PLoS One; 2011 May; 6(5):e18998. PubMed ID: 21573062 [TBL] [Abstract][Full Text] [Related]
32. Implications of Allee effects for fisheries management in a changing climate: evidence from Atlantic cod. Winter AM; Richter A; Eikeset AM Ecol Appl; 2020 Jan; 30(1):e01994. PubMed ID: 31468660 [TBL] [Abstract][Full Text] [Related]
33. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Lotze HK; Tittensor DP; Bryndum-Buchholz A; Eddy TD; Cheung WWL; Galbraith ED; Barange M; Barrier N; Bianchi D; Blanchard JL; Bopp L; Büchner M; Bulman CM; Carozza DA; Christensen V; Coll M; Dunne JP; Fulton EA; Jennings S; Jones MC; Mackinson S; Maury O; Niiranen S; Oliveros-Ramos R; Roy T; Fernandes JA; Schewe J; Shin YJ; Silva TAM; Steenbeek J; Stock CA; Verley P; Volkholz J; Walker ND; Worm B Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12907-12912. PubMed ID: 31186360 [TBL] [Abstract][Full Text] [Related]
35. Allee effect and the uncertainty of population recovery. Kuparinen A; Keith DM; Hutchings JA Conserv Biol; 2014 Jun; 28(3):790-8. PubMed ID: 24512300 [TBL] [Abstract][Full Text] [Related]
36. Uncertainties in a Baltic sea food-web model reveal challenges for future projections. Niiranen S; Blenckner T; Hjerne O; Tomczak MT Ambio; 2012 Sep; 41(6):613-25. PubMed ID: 22926883 [TBL] [Abstract][Full Text] [Related]
37. The role of a dominant predator in shaping biodiversity over space and time in a marine ecosystem. Ellingsen KE; Anderson MJ; Shackell NL; Tveraa T; Yoccoz NG; Frank KT J Anim Ecol; 2015 Sep; 84(5):1242-52. PubMed ID: 25981204 [TBL] [Abstract][Full Text] [Related]
38. Opportunities for climate-risk reduction through effective fisheries management. Cheung WWL; Jones MC; Reygondeau G; Frölicher TL Glob Chang Biol; 2018 Nov; 24(11):5149-5163. PubMed ID: 30141269 [TBL] [Abstract][Full Text] [Related]
39. Sensitivity of multispecies maximum sustainable yields to trends in the top (marine mammals) and bottom (primary production) compartments of the southern North Sea food-web. Stäbler M; Kempf A; Smout S; Temming A PLoS One; 2019; 14(1):e0210882. PubMed ID: 30689649 [TBL] [Abstract][Full Text] [Related]
40. Factors contributing to inter- and intra-annual variation in condition of cod Gadus morhua in the Barents Sea. Sandeman LR; Yaragina NA; Marshall CT J Anim Ecol; 2008 Jul; 77(4):725-34. PubMed ID: 18384351 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]