These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 23865226)
81. Combined effects of fishing and oil spills on marine fish: Role of stock demographic structure for offspring overlap with oil. Stige LC; Ottersen G; Yaragina NA; Vikebø FB; Stenseth NC; Langangen Ø Mar Pollut Bull; 2018 Apr; 129(1):336-342. PubMed ID: 29680556 [TBL] [Abstract][Full Text] [Related]
82. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Blanchard JL; Jennings S; Holmes R; Harle J; Merino G; Allen JI; Holt J; Dulvy NK; Barange M Philos Trans R Soc Lond B Biol Sci; 2012 Nov; 367(1605):2979-89. PubMed ID: 23007086 [TBL] [Abstract][Full Text] [Related]
83. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua. Dahlke FT; Leo E; Mark FC; Pörtner HO; Bickmeyer U; Frickenhaus S; Storch D Glob Chang Biol; 2017 Apr; 23(4):1499-1510. PubMed ID: 27718513 [TBL] [Abstract][Full Text] [Related]
84. Seasonal variation in biomarkers in blue mussel (Mytilus edulis), Icelandic scallop (Chlamys islandica) and Atlantic cod (Gadus morhua): implications for environmental monitoring in the Barents Sea. Nahrgang J; Brooks SJ; Evenset A; Camus L; Jonsson M; Smith TJ; Lukina J; Frantzen M; Giarratano E; Renaud PE Aquat Toxicol; 2013 Feb; 127():21-35. PubMed ID: 22310169 [TBL] [Abstract][Full Text] [Related]
85. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Tao F; Rötter RP; Palosuo T; Gregorio Hernández Díaz-Ambrona C; Mínguez MI; Semenov MA; Kersebaum KC; Nendel C; Specka X; Hoffmann H; Ewert F; Dambreville A; Martre P; Rodríguez L; Ruiz-Ramos M; Gaiser T; Höhn JG; Salo T; Ferrise R; Bindi M; Cammarano D; Schulman AH Glob Chang Biol; 2018 Mar; 24(3):1291-1307. PubMed ID: 29245185 [TBL] [Abstract][Full Text] [Related]
86. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Pershing AJ; Alexander MA; Hernandez CM; Kerr LA; Le Bris A; Mills KE; Nye JA; Record NR; Scannell HA; Scott JD; Sherwood GD; Thomas AC Science; 2015 Nov; 350(6262):809-12. PubMed ID: 26516197 [TBL] [Abstract][Full Text] [Related]
87. Fishing, fast growth and climate variability increase the risk of collapse. Pinsky ML; Byler D Proc Biol Sci; 2015 Aug; 282(1813):20151053. PubMed ID: 26246548 [TBL] [Abstract][Full Text] [Related]
88. Effects of climate and anthropogenic pressures on chemical warfare agent transfer in the Baltic Sea food web. Czub MJ; Silberberger MJ; Bełdowski J; Kotwicki L; Muller-Karulis B; Tomczak MT Sci Total Environ; 2024 Nov; 951():175455. PubMed ID: 39142412 [TBL] [Abstract][Full Text] [Related]
89. Marine reserves reduce risk of climate-driven phase shift by reinstating size- and habitat-specific trophic interactions. Ling SD; Johnson CR Ecol Appl; 2012 Jun; 22(4):1232-45. PubMed ID: 22827131 [TBL] [Abstract][Full Text] [Related]
90. Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Fernandes JA; Cheung WW; Jennings S; Butenschön M; de Mora L; Frölicher TL; Barange M; Grant A Glob Chang Biol; 2013 Aug; 19(8):2596-607. PubMed ID: 23625663 [TBL] [Abstract][Full Text] [Related]
91. The future of fishes and fisheries in the changing oceans. Cheung WWL J Fish Biol; 2018 Mar; 92(3):790-803. PubMed ID: 29537084 [TBL] [Abstract][Full Text] [Related]
92. Ensemble modeling of the Baltic Sea ecosystem to provide scenarios for management. Meier HE; Andersson HC; Arheimer B; Donnelly C; Eilola K; Gustafsson BG; Kotwicki L; Neset TS; Niiranen S; Piwowarczyk J; Savchuk OP; Schenk F; Węsławski JM; Zorita E Ambio; 2014 Feb; 43(1):37-48. PubMed ID: 24414803 [TBL] [Abstract][Full Text] [Related]
93. Allee effects and the Allee-effect zone in northwest Atlantic cod. Perälä T; Hutchings JA; Kuparinen A Biol Lett; 2022 Feb; 18(2):20210439. PubMed ID: 35104425 [TBL] [Abstract][Full Text] [Related]
94. Growth portfolios buffer climate-linked environmental change in marine systems. Campana SE; Smoliński S; Black BA; Morrongiello JR; Alexandroff SJ; Andersson C; Bogstad B; Butler PG; Denechaud C; Frank DC; Geffen AJ; Godiksen JA; Grønkjaer P; Hjörleifsson E; Jónsdóttir IG; Meekan M; Mette M; Tanner SE; van der Sleen P; von Leesen G Ecology; 2023 Mar; 104(3):e3918. PubMed ID: 36342309 [TBL] [Abstract][Full Text] [Related]
96. Comment on "Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery". Swain DP; Benoît HP; Cox SP; Cadigan NG Science; 2016 Apr; 352(6284):423. PubMed ID: 27102474 [TBL] [Abstract][Full Text] [Related]
97. Sensitivity of ecological models to their climate drivers: statistical ensembles for forcing. Fuentes M; Kittel TG; Nychka D Ecol Appl; 2006 Feb; 16(1):99-116. PubMed ID: 16705964 [TBL] [Abstract][Full Text] [Related]
98. A millennium of trophic stability in Atlantic cod (Gadus morhua): transition to a lower and converging trophic niche in modern times. Ólafsdóttir GÁ; Edvardsson R; Timsic S; Harrison R; Patterson WP Sci Rep; 2021 Jun; 11(1):12681. PubMed ID: 34135440 [TBL] [Abstract][Full Text] [Related]
99. An interactive governance and fish chain approach to fisheries rebuilding: a case study of the Northern Gulf cod in eastern Canada. Khan A; Chuenpagdee R Ambio; 2014 Sep; 43(5):600-13. PubMed ID: 24114071 [TBL] [Abstract][Full Text] [Related]
100. Diverse Transcriptome Responses to Salinity Change in Atlantic Cod Subpopulations. Małachowicz M; Krasnov A; Wenne R Cells; 2023 Dec; 12(23):. PubMed ID: 38067188 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]