These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 23865232)

  • 21. Racing against change: understanding dispersal and persistence to improve species' conservation prospects.
    Kerr JT
    Proc Biol Sci; 2020 Nov; 287(1939):20202061. PubMed ID: 33234075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Climate change-driven range losses among bumblebee species are poised to accelerate.
    Sirois-Delisle C; Kerr JT
    Sci Rep; 2018 Oct; 8(1):14464. PubMed ID: 30337544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The integration of climate change, spatial dynamics, and habitat fragmentation: A conceptual overview.
    Holyoak M; Heath SK
    Integr Zool; 2016 Jan; 11(1):40-59. PubMed ID: 26458303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatio-temporal variation of biotic factors underpins contemporary range dynamics of congeners.
    Naujokaitis-Lewis I; Fortin MJ
    Glob Chang Biol; 2016 Mar; 22(3):1201-13. PubMed ID: 26716759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America.
    Carroll C; Parks SA; Dobrowski SZ; Roberts DR
    Glob Chang Biol; 2018 Nov; 24(11):5318-5331. PubMed ID: 29963741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature tracking by North Sea benthic invertebrates in response to climate change.
    Hiddink JG; Burrows MT; García Molinos J
    Glob Chang Biol; 2015 Jan; 21(1):117-29. PubMed ID: 25179407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the use of species distribution models in conservation planning and management under climate change.
    Porfirio LL; Harris RM; Lefroy EC; Hugh S; Gould SF; Lee G; Bindoff NL; Mackey B
    PLoS One; 2014; 9(11):e113749. PubMed ID: 25420020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Population dynamics can be more important than physiological limits for determining range shifts under climate change.
    Fordham DA; Mellin C; Russell BD; Akçakaya RH; Bradshaw CJ; Aiello-Lammens ME; Caley JM; Connell SD; Mayfield S; Shepherd SA; Brook BW
    Glob Chang Biol; 2013 Oct; 19(10):3224-37. PubMed ID: 23907833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Moving forward: dispersal and species interactions determine biotic responses to climate change.
    Urban MC; Zarnetske PL; Skelly DK
    Ann N Y Acad Sci; 2013 Sep; 1297():44-60. PubMed ID: 23819864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accommodating climate change contingencies in conservation strategy.
    Gillson L; Dawson TP; Jack S; McGeoch MA
    Trends Ecol Evol; 2013 Mar; 28(3):135-42. PubMed ID: 23146578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Climate change and biological invasions: evidence, expectations, and response options.
    Hulme PE
    Biol Rev Camb Philos Soc; 2017 Aug; 92(3):1297-1313. PubMed ID: 27241717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies.
    Radchuk V; Turlure C; Schtickzelle N
    J Anim Ecol; 2013 Jan; 82(1):275-85. PubMed ID: 22924795
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Geographic coincidence of richness, mass, conservation value, and response to climate of U.S. land birds.
    Grundel R; Frohnapple KJ; Zaya DN; Glowacki GA; Weiskerger CJ; Patterson TA; Pavlovic NB
    Ecol Appl; 2014 Jun; 24(4):791-811. PubMed ID: 24988777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity.
    Forister ML; McCall AC; Sanders NJ; Fordyce JA; Thorne JH; O'Brien J; Waetjen DP; Shapiro AM
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):2088-92. PubMed ID: 20133854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How complex should models be? Comparing correlative and mechanistic range dynamics models.
    Fordham DA; Bertelsmeier C; Brook BW; Early R; Neto D; Brown SC; Ollier S; Araújo MB
    Glob Chang Biol; 2018 Mar; 24(3):1357-1370. PubMed ID: 29152817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiscale connectivity and graph theory highlight critical areas for conservation under climate change.
    Dilt TE; Weisberg PJ; Leitner P; Matocq MD; Inman RD; Nussear KE; Esque TC
    Ecol Appl; 2016 Jun; 26(4):1223-37. PubMed ID: 27509760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A framework for using niche models to estimate impacts of climate change on species distributions.
    Anderson RP
    Ann N Y Acad Sci; 2013 Sep; 1297():8-28. PubMed ID: 25098379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network.
    Batllori E; Parisien MA; Parks SA; Moritz MA; Miller C
    Glob Chang Biol; 2017 Aug; 23(8):3219-3230. PubMed ID: 28211141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Addressing potential local adaptation in species distribution models: implications for conservation under climate change.
    Hällfors MH; Liao J; Dzurisin J; Grundel R; Hyvärinen M; Towle K; Wu GC; Hellmann JJ
    Ecol Appl; 2016 Jun; 26(4):1154-69. PubMed ID: 27509755
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Remote-sensing based approach to forecast habitat quality under climate change scenarios.
    Requena-Mullor JM; López E; Castro AJ; Alcaraz-Segura D; Castro H; Reyes A; Cabello J
    PLoS One; 2017; 12(3):e0172107. PubMed ID: 28257501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.