These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2386543)

  • 1. Drug metabolizing capacity in vitro and in vivo--I. Correlations between hepatic microsomal monooxygenase markers in beta-naphthoflavone-induced rats.
    Matthew DE; Houston JB
    Biochem Pharmacol; 1990 Aug; 40(4):743-9. PubMed ID: 2386543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug metabolizing capacity in vitro and in vivo--II. Correlations between hepatic microsomal monooxygenase markers in phenobarbital-induced rats.
    Matthew DE; Houston JB
    Biochem Pharmacol; 1990 Aug; 40(4):751-8. PubMed ID: 2386544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of phenobarbitone and beta-naphthoflavone on hepatic microsomal drug metabolising enzymes of the male beagle dog.
    McKillop D
    Biochem Pharmacol; 1985 Sep; 34(17):3137-42. PubMed ID: 3929785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The model Ah-receptor agonist beta-naphthoflavone inhibits aflatoxin B1-DNA binding in vivo in rainbow trout at dietary levels that do not induce CYP1A enzymes.
    Takahashi N; Harttig U; Williams DE; Bailey GS
    Carcinogenesis; 1996 Jan; 17(1):79-87. PubMed ID: 8565141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of aging on hepatic microsomal monooxygenase induction by phenobarbital and beta-naphthoflavone.
    Rikans LE; Notley BA
    Biochem Pharmacol; 1982 Jul; 31(14):2339-43. PubMed ID: 6812588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexachlorobenzene-induced porphyria in Japanese quail. Effect of pretreatment with phenobarbital or beta-naphthoflavone.
    Carpenter HM; Williams DE; Henderson MC; Bender RC; Buhler DR
    Biochem Pharmacol; 1984 Dec; 33(23):3875-81. PubMed ID: 6439214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of piperonyl butoxide on hepatic cytochrome P-450-dependent monooxygenase activities in rainbow trout (Salmo gairdneri).
    Erickson DA; Goodrich MS; Lech JJ
    Toxicol Appl Pharmacol; 1988 Jun; 94(1):1-10. PubMed ID: 3259740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a single dose of the cytochrome P450 inducer, beta-naphthoflavone, on hepatic and renal covalent DNA modifications (I-compounds).
    Moorthy B; Sriram P; Randerath K
    Toxicology; 1995 Dec; 104(1-3):165-77. PubMed ID: 8560495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences between small and large intestine and liver in the inducibility of microsomal enzymes in response to stimulation by phenobarbitone and betanaphthoflavone in the diet.
    McDanell RE; McLean AE
    Biochem Pharmacol; 1984 Jun; 33(12):1977-80. PubMed ID: 6610422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hepatotoxicants on the induction of microsomal monooxygenase activity in sunfish liver by beta-naphthoflavone and benzo[a]pyrene.
    Oikari A; Jimenez B
    Ecotoxicol Environ Saf; 1992 Feb; 23(1):89-102. PubMed ID: 1375151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of xenobiotic biotransformation enzymes in kidney and liver of rainbow trout (Salmo gairdneri).
    Pesonen M; Celander M; Förlin L; Andersson T
    Toxicol Appl Pharmacol; 1987 Oct; 91(1):75-84. PubMed ID: 3118509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of temperature acclimation on the expression of hepatic cytochrome P4501A mRNA and protein in the fish Fundulus heteroclitus.
    Kloepper-Sams PJ; Stegeman JJ
    Arch Biochem Biophys; 1992 Nov; 299(1):38-46. PubMed ID: 1444451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. beta-Naphthoflavone-inducible cytochrome P4501A1 activity in liver microsomes of the marine safi fish (Siganus canaliculatus).
    Raza H; Otaiba A; Montague W
    Biochem Pharmacol; 1995 Oct; 50(9):1401-6. PubMed ID: 7503790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of cytochrome P-450c-mediated benzo[a]pyrene hydroxylase and ethoxyresorufin O-deethylase by dihydrosafrole.
    Kao LR; Wilkinson CF
    Xenobiotica; 1987 Jul; 17(7):793-805. PubMed ID: 3660849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the effects of hexachlorobenzene, beta-naphthoflavone, and phenobarbital on cytochrome P-450 and mixed-function oxidases in Japanese quail.
    Carpenter HM; Williams DE; Buhler DR
    J Toxicol Environ Health; 1985; 15(1):93-108. PubMed ID: 3981666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism-based inactivation of the major beta-naphthoflavone-inducible isozyme of rat liver cytochrome P-450 by the chloramphenicol analog N-(2-p-nitrophenethyl)dichloroacetamide.
    Miller NE; Halpert JR
    Drug Metab Dispos; 1987; 15(6):846-51. PubMed ID: 2893712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro cytochrome P450 monooxygenase and prostaglandin H-synthase mediated aflatoxin B1 biotransformation in guinea pig tissues: effects of beta-naphthoflavone treatment.
    Liu L; Nakatsu K; Massey TE
    Arch Toxicol; 1993; 67(6):379-85. PubMed ID: 8215906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of bromocriptine on hepatic cytochrome P-450 monooxygenase system.
    Moochhala SM; Lee EJ; Hu GT; Koh OS; Becket G
    Jpn J Pharmacol; 1989 Feb; 49(2):285-91. PubMed ID: 2499727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA alkylation by 1,2-dimethylhydrazine in the rat large intestine and liver: influence of diet and enzyme induction.
    Tacchi-Bedford AM; Whyman GD; McLean AE
    Toxicology; 1988 Jul; 50(2):181-91. PubMed ID: 3388438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of 1-arylpyrroles and naphthoflavones upon cytochrome P-450 dependent monooxygenase activities.
    Viswanathan T; Alworth WL
    J Med Chem; 1981 Jul; 24(7):822-30. PubMed ID: 7277387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.