These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 23865551)

  • 1. In vivo bone regeneration using tubular perfusion system bioreactor cultured nanofibrous scaffolds.
    Yeatts AB; Both SK; Yang W; Alghamdi HS; Yang F; Fisher JP; Jansen JA
    Tissue Eng Part A; 2014 Jan; 20(1-2):139-46. PubMed ID: 23865551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comments on: "In vivo bone regeneration using tubular perfusion system bioreactor cultured nanofibrous scaffolds" vascularization--one challenge of tissue engineering.
    Weigand A; Boos AM; Beier JP; Horch RE
    Tissue Eng Part A; 2014 Jun; 20(11-12):1778-9. PubMed ID: 24325477
    [No Abstract]   [Full Text] [Related]  

  • 3. Bioreactor culture duration of engineered constructs influences bone formation by mesenchymal stem cells.
    Mitra D; Whitehead J; Yasui OW; Leach JK
    Biomaterials; 2017 Nov; 146():29-39. PubMed ID: 28898756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-ceramic composite scaffolds for bioreactor-based bone engineering.
    Lv Q; Deng M; Ulery BD; Nair LS; Laurencin CT
    Clin Orthop Relat Res; 2013 Aug; 471(8):2422-33. PubMed ID: 23436161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human mesenchymal stem cell position within scaffolds influences cell fate during dynamic culture.
    Yeatts AB; Geibel EM; Fears FF; Fisher JP
    Biotechnol Bioeng; 2012 Sep; 109(9):2381-91. PubMed ID: 22422570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.
    He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J
    Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofiber scaffolds support bone regeneration associated with pulp stem cells.
    Xavier Acasigua GA; Bernardi L; Braghirolli DI; Filho MS; Pranke P; Medeiros Fossati AC
    Curr Stem Cell Res Ther; 2014; 9(4):330-7. PubMed ID: 24588088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats.
    Luo Y; Shen H; Fang Y; Cao Y; Huang J; Zhang M; Dai J; Shi X; Zhang Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6331-9. PubMed ID: 25741576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatogenic engineering from human bone marrow mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture.
    Wang J; Zong C; Shi D; Wang W; Shen D; Liu L; Tong X; Zheng Q; Gao C
    J Tissue Eng Regen Med; 2012 Jan; 6(1):29-39. PubMed ID: 21394930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfusion Bioreactor Culture of Bone Marrow Stromal Cells Enhances Cranial Defect Regeneration.
    Gandhi JK; Kao SW; Roux BM; Rodriguez RA; Tang SJ; Fisher JP; Cheng MH; Brey EM
    Plast Reconstr Surg; 2019 May; 143(5):993e-1002e. PubMed ID: 31033820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of flow perfusion culture and subcutaneous implantation with fibroblast-seeded PLLA-collagen 3D scaffolds for abdominal wall repair.
    Pu F; Rhodes NP; Bayon Y; Chen R; Brans G; Benne R; Hunt JA
    Biomaterials; 2010 May; 31(15):4330-40. PubMed ID: 20219244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tubular perfusion system culture of human mesenchymal stem cells on poly-L-lactic acid scaffolds produced using a supercritical carbon dioxide-assisted process.
    Pisanti P; Yeatts AB; Cardea S; Fisher JP; Reverchon E
    J Biomed Mater Res A; 2012 Oct; 100(10):2563-72. PubMed ID: 22528808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive monitoring of BMP-2 retention and bone formation in composites for bone tissue engineering using SPECT/CT and scintillation probes.
    Kempen DH; Yaszemski MJ; Heijink A; Hefferan TE; Creemers LB; Britson J; Maran A; Classic KL; Dhert WJ; Lu L
    J Control Release; 2009 Mar; 134(3):169-76. PubMed ID: 19105972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds.
    Zong C; Qian X; Tang Z; Hu Q; Chen J; Gao C; Tang R; Tong X; Wang J
    J Biomed Nanotechnol; 2014 Jun; 10(6):1091-104. PubMed ID: 24749403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor.
    Gomes ME; Holtorf HL; Reis RL; Mikos AG
    Tissue Eng; 2006 Apr; 12(4):801-9. PubMed ID: 16674293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid mineralization of hierarchical poly(l-lactic acid)/poly(ε-caprolactone) nanofibrous scaffolds by electrodeposition for bone regeneration.
    Nie W; Gao Y; McCoul DJ; Gillispie GJ; Zhang Y; Liang L; He C
    Int J Nanomedicine; 2019; 14():3929-3941. PubMed ID: 31213809
    [No Abstract]   [Full Text] [Related]  

  • 18. Dynamic Bioreactor Culture for Infiltration of Bone Mesenchymal Stem Cells within Electrospun Nanofibrous Scaffolds for Annulus Fibrosus Repair.
    Wang S; He YF; Ma J; Yu L; Wen JK; Ye XJ
    Orthop Surg; 2020 Feb; 12(1):304-311. PubMed ID: 31944618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of segmental bone defects in the rabbit ulna using periosteum encapsulated mesenchymal stem cells-loaded poly (lactic-co-glycolic acid) scaffolds.
    Zhang X; Qi YY; Zhao TF; Li D; Dai XS; Niu L; He RX
    Chin Med J (Engl); 2012 Nov; 125(22):4031-6. PubMed ID: 23158138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor.
    Alves da Silva ML; Martins A; Costa-Pinto AR; Correlo VM; Sol P; Bhattacharya M; Faria S; Reis RL; Neves NM
    J Tissue Eng Regen Med; 2011 Oct; 5(9):722-32. PubMed ID: 21953870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.