These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23865771)

  • 1. Fabrication of ceramic microspheres by diffusion-induced sol-gel reaction in double emulsions.
    Zhang L; Hao S; Liu B; Shum HC; Li J; Chen H
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11489-93. PubMed ID: 23865771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monodisperse w/w/w double emulsion induced by phase separation.
    Song Y; Shum HC
    Langmuir; 2012 Aug; 28(33):12054-9. PubMed ID: 22849828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.
    Hughes E; Maan AA; Acquistapace S; Burbidge A; Johns ML; Gunes DZ; Clausen P; Syrbe A; Hugo J; Schroen K; Miralles V; Atkins T; Gray R; Homewood P; Zick K
    J Colloid Interface Sci; 2013 Jan; 389(1):147-56. PubMed ID: 22964093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable gas/liquid/liquid double emulsions in a dual-coaxial microfluidic device.
    Xu JH; Chen R; Wang YD; Luo GS
    Lab Chip; 2012 May; 12(11):2029-36. PubMed ID: 22508390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of titania-silica core-shell microspheres via a controlled interface reaction in a microfluidic device.
    Lan W; Li S; Xu J; Luo G
    Langmuir; 2011 Nov; 27(21):13242-7. PubMed ID: 21899338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of glycylglycine-imprinted silica microspheres through different water-in-oil emulsion techniques.
    Ornelas M; Loureiro D; Araújo MJ; Marques E; Dias-Cabral C; Azenha M; Silva F
    J Chromatogr A; 2013 Jul; 1297():138-45. PubMed ID: 23706547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water.
    Schuch A; Deiters P; Henne J; Köhler K; Schuchmann HP
    J Colloid Interface Sci; 2013 Jul; 402():157-64. PubMed ID: 23643254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of colloidal silica crystals inside double emulsion drops.
    Shirk K; Steiner C; Kim JW; Marquez M; Martinez CJ
    Langmuir; 2013 Sep; 29(38):11849-57. PubMed ID: 23957634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of biocompatible PLGA drug-carrying microspheres by O/W pickering emulsions.
    Wei Z; Wang C; Liu H; Zou S; Tong Z
    Colloids Surf B Biointerfaces; 2012 Mar; 91():97-105. PubMed ID: 22088755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane-Integrated Glass Capillary Device for Preparing Small-Sized Water-in-Oil-in-Water Emulsion Droplets.
    Akamatsu K; Kanasugi S; Nakao S; Weitz DA
    Langmuir; 2015 Jun; 31(25):7166-72. PubMed ID: 26057203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of Silica Particles Encapsulating Retinol Using O/W/O Multiple Emulsions.
    Lee MH; Oh SG; Moon SK; Bae SY
    J Colloid Interface Sci; 2001 Aug; 240(1):83-89. PubMed ID: 11446789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the solvent-diffusion-rate modifier in a new emulsion solvent diffusion method for preparation of ketoprofen microspheres.
    Kawashima Y; Iwamoto T; Niwa T; Takeuchi H; Hino T
    J Microencapsul; 1993; 10(3):329-40. PubMed ID: 8377091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolonged release of tegafur from S/O/W multiple emulsion.
    Oh I; Kang YG; Lee YB; Shin SC; Kim CK
    Drug Dev Ind Pharm; 1998 Oct; 24(10):889-94. PubMed ID: 9876543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the stability and size of double-emulsion-templated poly(lactic-co-glycolic) acid microcapsules.
    Tu F; Lee D
    Langmuir; 2012 Jul; 28(26):9944-52. PubMed ID: 22667691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double emulsions with controlled morphology by microgel scaffolding.
    Thiele J; Seiffert S
    Lab Chip; 2011 Sep; 11(18):3188-92. PubMed ID: 21796282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transitions in structure in oil-in-water emulsions as studied by diffusing wave spectroscopy.
    Ruis HG; van Gruijthuijsen K; Venema P; van der Linden E
    Langmuir; 2007 Jan; 23(3):1007-13. PubMed ID: 17241006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of monodisperse, large-sized, functional biopolymeric microspheres using a low-cost and facile microfluidic device.
    Zhu L; Li Y; Zhang Q; Wang H; Zhu M
    Biomed Microdevices; 2010 Feb; 12(1):169-77. PubMed ID: 19924539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of primary emulsions on microsphere size and protein-loading in the double emulsion process.
    Maa YF; Hsu CC
    J Microencapsul; 1997; 14(2):225-41. PubMed ID: 9132473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device.
    Xu JH; Li SW; Tan J; Wang YJ; Luo GS
    Langmuir; 2006 Sep; 22(19):7943-6. PubMed ID: 16952223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.