These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23865780)

  • 1. Level alignment of a prototypical photocatalytic system: methanol on TiO2(110).
    Migani A; Mowbray DJ; Iacomino A; Zhao J; Petek H; Rubio A
    J Am Chem Soc; 2013 Aug; 135(31):11429-32. PubMed ID: 23865780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasiparticle Level Alignment for Photocatalytic Interfaces.
    Migani A; Mowbray DJ; Zhao J; Petek H; Rubio A
    J Chem Theory Comput; 2014 May; 10(5):2103-13. PubMed ID: 26580537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular hydrogen formation from photocatalysis of methanol on TiO2(110).
    Xu C; Yang W; Guo Q; Dai D; Chen M; Yang X
    J Am Chem Soc; 2013 Jul; 135(28):10206-9. PubMed ID: 23819680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic decomposition of methanol over La/TiO
    Kočí K; Troppová I; Edelmannová M; Starostka J; Matějová L; Lang J; Reli M; Drobná H; Rokicińska A; Kuśtrowski P; Čapek L
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):34818-34825. PubMed ID: 29043586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of valence photoemission spectra and quasiparticle excitations at chromophore-semiconductor interfaces.
    Patrick CE; Giustino F
    Phys Rev Lett; 2012 Sep; 109(11):116801. PubMed ID: 23005661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Janus nanostructures based on Au-TiO2 heterodimers and their photocatalytic activity in the oxidation of methanol.
    Pradhan S; Ghosh D; Chen S
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):2060-5. PubMed ID: 20355833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic cross-coupling of methanol and formaldehyde on a rutile TiO2(110) surface.
    Yuan Q; Wu Z; Jin Y; Xu L; Xiong F; Ma Y; Huang W
    J Am Chem Soc; 2013 Apr; 135(13):5212-9. PubMed ID: 23488967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermal synthesis of ionic liquid [Bmim]OH-modified TiO2 nanoparticles with enhanced photocatalytic activity under visible light.
    Hu S; Wang A; Li X; Wang Y; Löwe H
    Chem Asian J; 2010 May; 5(5):1171-7. PubMed ID: 20379993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasiparticle interfacial level alignment of highly hybridized frontier levels: H2O on TiO2(110).
    Migani A; Mowbray DJ; Zhao J; Petek H
    J Chem Theory Comput; 2015 Jan; 11(1):239-51. PubMed ID: 26574222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical investigation on photocatalytic oxidation on the TiO2 surface.
    Suzuki S; Tsuneda T; Hirao K
    J Chem Phys; 2012 Jan; 136(2):024706. PubMed ID: 22260609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution photoemission and x-ray absorption spectroscopy of a lepidocrocite-like TiO2 nanosheet on Pt(110) (1 × 2).
    Walle LE; Agnoli S; Svenum IH; Borg A; Artiglia L; Krüger P; Sandell A; Granozzi G
    J Chem Phys; 2011 Aug; 135(5):054706. PubMed ID: 21823725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochemical grafting of organic alkenes to single-crystal TiO2 surfaces: a mechanistic study.
    Franking R; Kim H; Chambers SA; Mangham AN; Hamers RJ
    Langmuir; 2012 Aug; 28(33):12085-93. PubMed ID: 22746250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric-dipole effect of defects on the energy band alignment of rutile and anatase TiO₂.
    Zhang D; Yang M; Dong S
    Phys Chem Chem Phys; 2015 Nov; 17(43):29079-84. PubMed ID: 26459748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of particle size on surface electronic and electrocatalytic properties of Pt/TiO2 nanocatalysts.
    Yoo SJ; Jeon TY; Lee KS; Park KW; Sung YE
    Chem Commun (Camb); 2010 Feb; 46(5):794-6. PubMed ID: 20087523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of electron behavior in Nano-TiO2 photocatalysis by using in situ open-circuit voltage and photoconductivity measurements.
    Liu B; Wang X; Wen L; Zhao X
    Chemistry; 2013 Aug; 19(32):10751-9. PubMed ID: 23794228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles.
    Chuang HY; Chen DH
    Nanotechnology; 2009 Mar; 20(10):105704. PubMed ID: 19417532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rationale for the higher reactivity of interfacial sites in methanol decomposition on Au13/TiO2(110).
    Hong S; Rahman TS
    J Am Chem Soc; 2013 May; 135(20):7629-35. PubMed ID: 23617758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the surface adsorption and photocatalytic degradation of catechols on TiO2 by solid-state NMR spectroscopy.
    Tachikawa T; Takai Y; Tojo S; Fujitsuka M; Majima T
    Langmuir; 2006 Jan; 22(3):893-6. PubMed ID: 16430244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun nanofibers of Bi-doped TiO2 with high photocatalytic activity under visible light irradiation.
    Xu J; Wang W; Shang M; Gao E; Zhang Z; Ren J
    J Hazard Mater; 2011 Nov; 196():426-30. PubMed ID: 21955660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic CO(2) reduction using non-titanium metal oxides and sulfides.
    Navalón S; Dhakshinamoorthy A; Alvaro M; Garcia H
    ChemSusChem; 2013 Apr; 6(4):562-77. PubMed ID: 23468280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.