BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23865844)

  • 41. Methanosarcina acetivorans flap endonuclease 1 activity is inhibited by a cognate single-stranded-DNA-binding protein.
    Lin Y; Guzman CE; McKinney MC; Nair SK; Ha T; Cann IK
    J Bacteriol; 2006 Sep; 188(17):6153-67. PubMed ID: 16923882
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isolation of an oxygen-sensitive FNR protein of Escherichia coli: interaction at activator and repressor sites of FNR-controlled genes.
    Melville SB; Gunsalus RP
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1226-31. PubMed ID: 8577745
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of cysteine and arginine residues essential for the phosphotransacetylase from Methanosarcina thermophila.
    Rasche ME; Smith KS; Ferry JG
    J Bacteriol; 1997 Dec; 179(24):7712-7. PubMed ID: 9401029
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus.
    Hirano S; Matsumoto N; Morita M; Sasaki K; Ohmura N
    Lett Appl Microbiol; 2013 May; 56(5):315-21. PubMed ID: 23413966
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Global transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities.
    Veit K; Ehlers C; Ehrenreich A; Salmon K; Hovey R; Gunsalus RP; Deppenmeier U; Schmitz RA
    Mol Genet Genomics; 2006 Jul; 276(1):41-55. PubMed ID: 16625354
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular basis for the integration of environmental signals by FurB from
    Sein-Echaluce VC; Pallarés MC; Lostao A; Yruela I; Velázquez-Campoy A; Luisa Peleato M; Fillat MF
    Biochem J; 2018 Jan; 475(1):151-168. PubMed ID: 29203647
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection.
    Toledano MB; Kullik I; Trinh F; Baird PT; Schneider TD; Storz G
    Cell; 1994 Sep; 78(5):897-909. PubMed ID: 8087856
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Directed mutagenesis and plasmid-based complementation in the methanogenic archaeon Methanosarcina acetivorans C2A demonstrated by genetic analysis of proline biosynthesis.
    Zhang JK; White AK; Kuettner HC; Boccazzi P; Metcalf WW
    J Bacteriol; 2002 Mar; 184(5):1449-54. PubMed ID: 11844777
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo transposon mutagenesis of the methanogenic archaeon Methanosarcina acetivorans C2A using a modified version of the insect mariner-family transposable element Himar1.
    Zhang JK; Pritchett MA; Lampe DJ; Robertson HM; Metcalf WW
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9665-70. PubMed ID: 10920201
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New protein-DNA complexes in archaea: a small monomeric protein induces a sharp V-turn DNA structure.
    Loth K; Largillière J; Coste F; Culard F; Landon C; Castaing B; Delmas AF; Paquet F
    Sci Rep; 2019 Oct; 9(1):14253. PubMed ID: 31582767
    [TBL] [Abstract][Full Text] [Related]  

  • 51. S-layer, surface-accessible, and concanavalin A binding proteins of Methanosarcina acetivorans and Methanosarcina mazei.
    Francoleon DR; Boontheung P; Yang Y; Kin U; Ytterberg AJ; Denny PA; Denny PC; Loo JA; Gunsalus RP; Loo RR
    J Proteome Res; 2009 Apr; 8(4):1972-82. PubMed ID: 19228054
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vivo role of three fused corrinoid/methyl transfer proteins in Methanosarcina acetivorans.
    Oelgeschläger E; Rother M
    Mol Microbiol; 2009 Jun; 72(5):1260-72. PubMed ID: 19432805
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular analyses of an unusual translesion DNA polymerase from Methanosarcina acetivorans C2A.
    Lin LJ; Yoshinaga A; Lin Y; Guzman C; Chen YH; Mei S; Lagunas AM; Koike S; Iwai S; Spies MA; Nair SK; Mackie RI; Ishino Y; Cann IK
    J Mol Biol; 2010 Mar; 397(1):13-30. PubMed ID: 20080107
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional analysis of the three TATA binding protein homologs in Methanosarcina acetivorans.
    Reichlen MJ; Murakami KS; Ferry JG
    J Bacteriol; 2010 Mar; 192(6):1511-7. PubMed ID: 20081030
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The DNA binding protein Tfx from Methanobacterium thermoautotrophicum: structure, DNA binding properties and transcriptional regulation.
    Hochheimer A; Hedderich R; Thauer RK
    Mol Microbiol; 1999 Jan; 31(2):641-50. PubMed ID: 10027980
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering of functional replication protein a homologs based on insights into the evolution of oligonucleotide/oligosaccharide-binding folds.
    Lin Y; Lin LJ; Sriratana P; Coleman K; Ha T; Spies M; Cann IK
    J Bacteriol; 2008 Sep; 190(17):5766-80. PubMed ID: 18586938
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electron transport in acetate-grown Methanosarcina acetivorans.
    Wang M; Tomb JF; Ferry JG
    BMC Microbiol; 2011 Jul; 11():165. PubMed ID: 21781343
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stoichiometry of the binding of chromosomal protein MC1 from the archaebacterium, Methanosarcina spp. CHTI55, to DNA.
    Culard F; Laine B; Sautière P; Maurizot JC
    FEBS Lett; 1993 Jan; 315(3):335-9. PubMed ID: 8422927
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transcriptional activation of dehalorespiration. Identification of redox-active cysteines regulating dimerization and DNA binding.
    Pop SM; Gupta N; Raza AS; Ragsdale SW
    J Biol Chem; 2006 Sep; 281(36):26382-90. PubMed ID: 16840784
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Membrane-Bound Cytochrome Enables
    Holmes DE; Ueki T; Tang HY; Zhou J; Smith JA; Chaput G; Lovley DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.