These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23866129)

  • 1. Slow sand filters effectively reduce Phytophthora after a pathogen switch from Fusarium and a simulated pump failure.
    Lee E; Oki LR
    Water Res; 2013 Sep; 47(14):5121-9. PubMed ID: 23866129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the efficacy of pre-harvest, chlorine-based sanitizers against human pathogen indicator microorganisms and Phytophthora capsici in non-recycled surface irrigation water.
    Lewis Ivey ML; Miller SA
    Water Res; 2013 Sep; 47(13):4639-51. PubMed ID: 23770479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters.
    Haig SJ; Quince C; Davies RL; Dorea CC; Collins G
    Water Res; 2014 Sep; 61():141-51. PubMed ID: 24908577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial, viral and turbidity removal by intermittent slow sand filtration for household use in developing countries: experimental investigation and modeling.
    Jenkins MW; Tiwari SK; Darby J
    Water Res; 2011 Nov; 45(18):6227-39. PubMed ID: 21974872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent versus continuous operation of biosand filters.
    Young-Rojanschi C; Madramootoo C
    Water Res; 2014 Feb; 49():1-10. PubMed ID: 24316177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and temporal analysis of the microbial community in slow sand filters used for treating horticultural irrigation water.
    Calvo-Bado LA; Pettitt TR; Parsons N; Petch GM; Morgan JA; Whipps JM
    Appl Environ Microbiol; 2003 Apr; 69(4):2116-25. PubMed ID: 12676691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and Retention of Phytophthora capsici Zoospores in Saturated Porous Media.
    Jeon S; Krasnow CS; Kirby CK; Granke LL; Hausbeck MK; Zhang W
    Environ Sci Technol; 2016 Sep; 50(17):9270-8. PubMed ID: 27517718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification of harvested rainwater using slow sand filters with low-cost materials: Bacterial community structure and purifying effect.
    Zhao Y; Wang X; Liu C; Wang S; Wang X; Hou H; Wang J; Li H
    Sci Total Environ; 2019 Jul; 674():344-354. PubMed ID: 31005836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of the colmation layer to the elimination of coliphages by slow sand filtration.
    Dizer H; Grützmacher G; Bartel H; Wiese HB; Szewzyk R; López-Pila JM
    Water Sci Technol; 2004; 50(2):211-4. PubMed ID: 15344793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of slow sand filtration with backwash and the influence of the filter media on the filter recovery and cleaning.
    de Souza FH; Pizzolatti BS; Schöntag JM; Sens ML
    Environ Technol; 2016; 37(14):1802-10. PubMed ID: 26789389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring biofilm function in new and matured full-scale slow sand filters using flow cytometric histogram image comparison (CHIC).
    Chan S; Pullerits K; Riechelmann J; Persson KM; Rådström P; Paul CJ
    Water Res; 2018 Jul; 138():27-36. PubMed ID: 29571086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling antimicrobial contaminant removal in slow sand filtration.
    Rooklidge SJ; Burns ER; Bolte JP
    Water Res; 2005; 39(2-3):331-9. PubMed ID: 15644241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The efficacy of zero valent iron-sand filtration on the reduction of Escherichia coli and Listeria monocytogenes in surface water for use in irrigation.
    Marik CM; Anderson-Coughlin B; Gartley S; Craighead S; Bradshaw R; Kulkarni P; Sharma M; Kniel KE
    Environ Res; 2019 Jun; 173():33-39. PubMed ID: 30884436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective elimination of bacterial faecal indicators in the Schmutzdecke of slow sand filtration columns.
    Pfannes KR; Langenbach KM; Pilloni G; Stührmann T; Euringer K; Lueders T; Neu TR; Müller JA; Kästner M; Meckenstock RU
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10323-32. PubMed ID: 26264137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermittent slow sand filtration for preventing diarrhoea among children in Kenyan households using unimproved water sources: randomized controlled trial.
    Tiwari SS; Schmidt WP; Darby J; Kariuki ZG; Jenkins MW
    Trop Med Int Health; 2009 Nov; 14(11):1374-82. PubMed ID: 19735370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot-scale investigation on the removal of organic foulants in secondary effluent by slow sand filtration prior to ultrafiltration.
    Zheng X; Ernst M; Jekel M
    Water Res; 2010 May; 44(10):3203-13. PubMed ID: 20347470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of MIB and geosmin with slow sand filters.
    Hsieh ST; Lin TF; Wang GS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(8):951-7. PubMed ID: 20473805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of slow sand filtration for disinfection of secondary clarifier effluent.
    Langenbach K; Kuschk P; Horn H; Kästner M
    Water Res; 2010 Jan; 44(1):159-66. PubMed ID: 19833374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of aluminum in slow sand filtration.
    Weber-Shirk ML; Chan KL
    Water Res; 2007 Mar; 41(6):1350-4. PubMed ID: 17276479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention and removal of the fish pathogenic bacterium Yersinia ruckeri in biological sand filters.
    Bomo AM; Ekeberg D; Stevik TK; Hanssen JF; Frostegård A
    J Appl Microbiol; 2004; 97(3):598-608. PubMed ID: 15281941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.