These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 23866138)
41. Nutrient removal in wastewater treatment high rate algal ponds with carbon dioxide addition. Park JB; Craggs RJ Water Sci Technol; 2011; 63(8):1758-64. PubMed ID: 21866778 [TBL] [Abstract][Full Text] [Related]
42. Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater. Cho DH; Ramanan R; Heo J; Kang Z; Kim BH; Ahn CY; Oh HM; Kim HS Bioresour Technol; 2015 Sep; 191():481-7. PubMed ID: 25746593 [TBL] [Abstract][Full Text] [Related]
43. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment. Young P; Taylor M; Fallowfield HJ World J Microbiol Biotechnol; 2017 Jun; 33(6):117. PubMed ID: 28493156 [TBL] [Abstract][Full Text] [Related]
44. Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Arashiro LT; Montero N; Ferrer I; Acién FG; Gómez C; Garfí M Sci Total Environ; 2018 May; 622-623():1118-1130. PubMed ID: 29890581 [TBL] [Abstract][Full Text] [Related]
45. Tetracycline removal during wastewater treatment in high-rate algal ponds. de Godos I; Muñoz R; Guieysse B J Hazard Mater; 2012 Aug; 229-230():446-9. PubMed ID: 22727483 [TBL] [Abstract][Full Text] [Related]
46. Evaluation of High Rate Algae Ponds for treatment of anaerobically digested wastewater: Effect of CO2 addition and modification of dilution rate. de Godos I; Arbib Z; Lara E; Rogalla F Bioresour Technol; 2016 Nov; 220():253-261. PubMed ID: 27579799 [TBL] [Abstract][Full Text] [Related]
47. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Samorì G; Samorì C; Guerrini F; Pistocchi R Water Res; 2013 Feb; 47(2):791-801. PubMed ID: 23211134 [TBL] [Abstract][Full Text] [Related]
48. Insight into the risk of replenishing urban landscape ponds with reclaimed wastewater. Chen R; Ao D; Ji J; Wang XC; Li YY; Huang Y; Xue T; Guo H; Wang N; Zhang L J Hazard Mater; 2017 Feb; 324(Pt B):573-582. PubMed ID: 27856052 [TBL] [Abstract][Full Text] [Related]
49. Comparison of the treatment performance of a high rate algal pond and a facultative waste stabilisation pond operating in rural South Australia. Buchanan N; Young P; Cromar NJ; Fallowfield HJ Water Sci Technol; 2018 Aug; 78(1-2):3-11. PubMed ID: 30101783 [TBL] [Abstract][Full Text] [Related]
50. Innovative hybrid system for wastewater treatment: High-rate algal ponds for effluent treatment and biofilm reactor for biomass production and harvesting. Rodrigues de Assis L; Calijuri ML; Assemany PP; Silva TA; Teixeira JS J Environ Manage; 2020 Nov; 274():111183. PubMed ID: 32784083 [TBL] [Abstract][Full Text] [Related]
51. Perspective assessment of algae-based biofuel production using recycled nutrient sources: the case of Japan. Wang T; Yabar H; Higano Y Bioresour Technol; 2013 Jan; 128():688-96. PubMed ID: 23228517 [TBL] [Abstract][Full Text] [Related]
52. Emerging contaminant degradation and removal in algal wastewater treatment ponds: Identifying the research gaps. Norvill ZN; Shilton A; Guieysse B J Hazard Mater; 2016 Aug; 313():291-309. PubMed ID: 27135171 [TBL] [Abstract][Full Text] [Related]
53. Microalgal diversity fosters stable biomass productivity in open ponds treating wastewater. Cho DH; Choi JW; Kang Z; Kim BH; Oh HM; Kim HS; Ramanan R Sci Rep; 2017 May; 7(1):1979. PubMed ID: 28512332 [TBL] [Abstract][Full Text] [Related]
54. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. Kim BH; Kang Z; Ramanan R; Choi JE; Cho DH; Oh HM; Kim HS J Microbiol Biotechnol; 2014 Aug; 24(8):1123-32. PubMed ID: 24759425 [TBL] [Abstract][Full Text] [Related]
55. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds. Sutherland DL; Turnbull MH; Broady PA; Craggs RJ Water Res; 2014 Dec; 66():53-62. PubMed ID: 25189477 [TBL] [Abstract][Full Text] [Related]
56. Environmental drivers that influence microalgal species in fullscale wastewater treatment high rate algal ponds. Sutherland DL; Turnbull MH; Craggs RJ Water Res; 2017 Nov; 124():504-512. PubMed ID: 28802135 [TBL] [Abstract][Full Text] [Related]
57. Combined yeast and microalgal cultivation in a pilot-scale raceway pond for urban wastewater treatment and potential biodiesel production. Iasimone F; Zuccaro G; D'Oriano V; Franci G; Galdiero M; Pirozzi D; De Felice V; Pirozzi F Water Sci Technol; 2018 Feb; 77(3-4):1062-1071. PubMed ID: 29488969 [TBL] [Abstract][Full Text] [Related]
58. Microalgal luxury uptake of phosphorus in waste stabilization ponds - frequency of occurrence and high performing genera. Crimp A; Brown N; Shilton A Water Sci Technol; 2018 Aug; 78(1-2):165-173. PubMed ID: 30101799 [TBL] [Abstract][Full Text] [Related]
59. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Christenson LB; Sims RC Biotechnol Bioeng; 2012 Jul; 109(7):1674-84. PubMed ID: 22328283 [TBL] [Abstract][Full Text] [Related]
60. Escherichia coli removal during domestic wastewater treatment in outdoor high rate algae ponds: long-term performance and mechanistic implications. Chambonniere P; Bronlund J; Guieysse B Water Sci Technol; 2020 Sep; 82(6):1166-1175. PubMed ID: 33055406 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]