These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23866188)

  • 1. Biomechanical assessment of fully bioresorbable devices.
    Gogas BD; King SB; Timmins LH; Passerini T; Piccinelli M; Veneziani A; Kim S; Molony DS; Giddens DP; Serruys PW; Samady H
    JACC Cardiovasc Interv; 2013 Jul; 6(7):760-1. PubMed ID: 23866188
    [No Abstract]   [Full Text] [Related]  

  • 2. Short- and long-term implications of a bioresorbable vascular scaffold implantation on the local endothelial shear stress patterns.
    Bourantas CV; Papafaklis MI; Garcia-Garcia HM; Farooq V; Diletti R; Muramatsu T; Zhang Y; Kalatzis FG; Naka KK; Fotiadis DI; Onuma Y; Michalis LK; Serruys PW
    JACC Cardiovasc Interv; 2014 Jan; 7(1):100-1. PubMed ID: 24456718
    [No Abstract]   [Full Text] [Related]  

  • 3. Novel 3-Dimensional Vessel and Scaffold Reconstruction Methodology for the Assessment of Strut-Level Wall Shear Stress After Deployment of Bioresorbable Vascular Scaffolds From the ABSORB III Imaging Substudy.
    Gogas BD; Yang B; Piccinelli M; Giddens DP; King SB; Kereiakes DJ; Ellis SG; Stone GW; Veneziani A; Samady H
    JACC Cardiovasc Interv; 2016 Mar; 9(5):501-3. PubMed ID: 26965940
    [No Abstract]   [Full Text] [Related]  

  • 4. Optical coherence tomography assessment of late intra-scaffold dissection: a new challenge of bioresorbable scaffolds.
    Ohno Y; Mangiameli A; Attizzani GF; Capodanno D; Tamburino C
    JACC Cardiovasc Interv; 2015 Jan; 8(1 Pt A):e11-2. PubMed ID: 25499307
    [No Abstract]   [Full Text] [Related]  

  • 5. Anatomic stabilization and functional normalization of a ruptured coronary plaque 12 months after implantation of a bioresorbable scaffold.
    Gori T; Schulz E; Münzel T
    JACC Cardiovasc Interv; 2014 May; 7(5):e47-8. PubMed ID: 24746656
    [No Abstract]   [Full Text] [Related]  

  • 6. Non-Newtonian pulsatile shear stress assessment: a method to differentiate bioresorbable scaffold platforms.
    Tenekecioglu E; Torii R; Bourantas CV; Al-Lamee R; Serruys PW
    Eur Heart J; 2017 Sep; 38(33):2570. PubMed ID: 28903475
    [No Abstract]   [Full Text] [Related]  

  • 7. Strut protrusion and shape impact on endothelial shear stress: insights from pre-clinical study comparing Mirage and Absorb bioresorbable scaffolds.
    Tenekecioglu E; Sotomi Y; Torii R; Bourantas C; Miyazaki Y; Collet C; Crake T; Su S; Onuma Y; Serruys PW
    Int J Cardiovasc Imaging; 2017 Sep; 33(9):1313-1322. PubMed ID: 28365819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First serial assessment at 6 months and 2 years of the second generation of absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study.
    Ormiston JA; Serruys PW; Onuma Y; van Geuns RJ; de Bruyne B; Dudek D; Thuesen L; Smits PC; Chevalier B; McClean D; Koolen J; Windecker S; Whitbourn R; Meredith I; Dorange C; Veldhof S; Hebert KM; Rapoza R; Garcia-Garcia HM
    Circ Cardiovasc Interv; 2012 Oct; 5(5):620-32. PubMed ID: 23048057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-scaffold restenosis in a previous left main bifurcation lesion treated with bioresorbable scaffold v-stenting.
    Miyazaki T; Panoulas VF; Sato K; Kawamoto H; Naganuma T; Latib A; Colombo A
    JACC Cardiovasc Interv; 2015 Jan; 8(1 Pt A):e7-e10. PubMed ID: 25499306
    [No Abstract]   [Full Text] [Related]  

  • 10. Coregistered intravascular ultrasound and optical coherence tomography imaging during implantation of a bioresorbable vascular scaffold.
    Brown AJ; McCormick LM; Hoole SP; West NE
    JACC Cardiovasc Interv; 2013 Jul; 6(7):e41-2. PubMed ID: 23866193
    [No Abstract]   [Full Text] [Related]  

  • 11. Post-implantation shear stress assessment: an emerging tool for differentiation of bioresorbable scaffolds.
    Tenekecioglu E; Torii R; Katagiri Y; Chichareon P; Asano T; Miyazaki Y; Takahashi K; Modolo R; Al-Lamee R; Al-Lamee K; Colet C; Reiber JHC; Pekkan K; van Geuns R; Bourantas CV; Onuma Y; Serruys PW
    Int J Cardiovasc Imaging; 2019 Mar; 35(3):409-418. PubMed ID: 30426299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Year Follow-Up OCT Images of 2 Bifurcation Lesions Treated With Bioresorbable Vascular Scaffolds.
    Kawamoto H; Panoulas VF; Sato K; Miyazaki T; Latib A; Colombo A
    JACC Cardiovasc Imaging; 2015 May; 8(5):617-618. PubMed ID: 25457765
    [No Abstract]   [Full Text] [Related]  

  • 13. The Effect of Strut Protrusion on Shear Stress Distribution: Hemodynamic Insights From a Prospective Clinical Trial.
    Tenekecioglu E; Torii R; Sotomi Y; Collet C; Dijkstra J; Miyazaki Y; Crake T; Su S; Costa R; Chámie D; Liew HB; Santoso T; Onuma Y; Abizaid A; Bourantas CV; Serruys PW
    JACC Cardiovasc Interv; 2017 Sep; 10(17):1803-1805. PubMed ID: 28882287
    [No Abstract]   [Full Text] [Related]  

  • 14. Side branch occlusion after bioresorbable vascular scaffold implantation: lessons from optimal coherence tomography.
    Sato K; Panoulas VF; Kawamoto H; Naganuma T; Miyazaki T; Latib A; Colombo A
    JACC Cardiovasc Interv; 2015 Jan; 8(1 Pt A):116-8. PubMed ID: 25616826
    [No Abstract]   [Full Text] [Related]  

  • 15. Serial 2-dimensional and 3-dimensional optical coherence tomography assessment of overhanging struts of drug-eluting absorbable metal scaffold: "DREAMS" for jailed side branch?
    Muramatsu T; García-García HM; Serruys PW; Waksman R; Verheye S;
    JACC Cardiovasc Interv; 2014 May; 7(5):575-6. PubMed ID: 24852807
    [No Abstract]   [Full Text] [Related]  

  • 16. Treading the risky ground of coronary bifurcation lesion revascularization, the "biodegradable strategy" may represent the lifeline.
    Piraino D; Buccheri D; Andolina G
    Int J Cardiol; 2016 Oct; 221():577-80. PubMed ID: 27420582
    [No Abstract]   [Full Text] [Related]  

  • 17. Endothelial shear stress and coronary plaque characteristics in humans: combined frequency-domain optical coherence tomography and computational fluid dynamics study.
    Vergallo R; Papafaklis MI; Yonetsu T; Bourantas CV; Andreou I; Wang Z; Fujimoto JG; McNulty I; Lee H; Biasucci LM; Crea F; Feldman CL; Michalis LK; Stone PH; Jang IK
    Circ Cardiovasc Imaging; 2014 Nov; 7(6):905-11. PubMed ID: 25190591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local Hemodynamics: An Innocent Bystander or a Critical Factor Regulating Neoatherosclerotic Evolution?
    Michail M; Torii R; Crake T; Ozkor M; Garcia-Garcia HM; Tenekecioglu E; Onuma Y; Mathur A; Serruys PW; Bourantas CV
    JACC Cardiovasc Interv; 2015 Aug; 8(9):e149-e150. PubMed ID: 26210805
    [No Abstract]   [Full Text] [Related]  

  • 19. Modified T-technique with bioresorbable scaffolds ensures complete carina coverage: an optical coherence tomography study.
    van Mieghem N; Wilschut JJ; Ligthart J; Witberg K; van Geuns RJ; Regar E
    JACC Cardiovasc Interv; 2014 Aug; 7(8):e109-10. PubMed ID: 25086845
    [No Abstract]   [Full Text] [Related]  

  • 20. Optical coherence tomography of a bifurcation lesion treated with bioresorbable vascular scaffolds with the "mini-crush" technique.
    Costopoulos C; Naganuma T; Latib A; Colombo A
    JACC Cardiovasc Interv; 2013 Dec; 6(12):1326-7. PubMed ID: 24355123
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.