These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23866962)

  • 1. Does use of a virtual environment change reaching while standing in patients with traumatic brain injury?
    Schafer AY; Ustinova KI
    J Neuroeng Rehabil; 2013 Jul; 10():76. PubMed ID: 23866962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of viewing angle on arm reaching while standing in a virtual environment: potential for virtual rehabilitation.
    Ustinova KI; Perkins J; Szostakowski L; Tamkei LS; Leonard WA
    Acta Psychol (Amst); 2010 Feb; 133(2):180-90. PubMed ID: 20021998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposition of postural movements in individuals with mild TBI while reaching to intercept a moving virtual target.
    Ustinova KI
    Physiother Theory Pract; 2017 Jul; 33(7):527-534. PubMed ID: 28557606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planning and adjustments for the control of reach extent in a virtual environment.
    Stewart JC; Gordon J; Winstein CJ
    J Neuroeng Rehabil; 2013 Mar; 10():27. PubMed ID: 23453002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI.
    Ustinova KI; Leonard WA; Cassavaugh ND; Ingersoll CD
    J Neuroeng Rehabil; 2011 Oct; 8():61. PubMed ID: 22040301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial.
    Subramanian SK; Lourenço CB; Chilingaryan G; Sveistrup H; Levin MF
    Neurorehabil Neural Repair; 2013 Jan; 27(1):13-23. PubMed ID: 22785001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quality of Grasping and the Role of Haptics in a 3-D Immersive Virtual Reality Environment in Individuals With Stroke.
    Levin MF; Magdalon EC; Michaelsen SM; Quevedo AA
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1047-55. PubMed ID: 25594971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postural perturbations induced by a moving virtual environment are reduced in persons with brain injury when gripping a mobile object.
    Ustinova KI; Silkwood-Sherer DJ
    J Neurol Phys Ther; 2014 Apr; 38(2):125-33. PubMed ID: 24572500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognitive ability predicts motor learning on a virtual reality game in patients with TBI.
    O'Neil RL; Skeel RL; Ustinova KI
    NeuroRehabilitation; 2013; 33(4):667-80. PubMed ID: 24018367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination of reach-to-grasp in physical and haptic-free virtual environments.
    Furmanek MP; Schettino LF; Yarossi M; Kirkman S; Adamovich SV; Tunik E
    J Neuroeng Rehabil; 2019 Jun; 16(1):78. PubMed ID: 31248426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematics of reaching movements in a 2-D virtual environment in adults with and without stroke.
    Liebermann DG; Berman S; Weiss PL; Levin MF
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):778-87. PubMed ID: 22907972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Back to reality: differences in learning strategy in a simplified virtual and a real throwing task.
    Zhang Z; Sternad D
    J Neurophysiol; 2021 Jan; 125(1):43-62. PubMed ID: 33146063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual reality game-based therapy for treatment of postural and co-ordination abnormalities secondary to TBI: a pilot study.
    Ustinova KI; Perkins J; Leonard WA; Hausbeck CJ
    Brain Inj; 2014; 28(4):486-95. PubMed ID: 24702281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematics of pointing movements made in a virtual versus a physical 3-dimensional environment in healthy and stroke subjects.
    Knaut LA; Subramanian SK; McFadyen BJ; Bourbonnais D; Levin MF
    Arch Phys Med Rehabil; 2009 May; 90(5):793-802. PubMed ID: 19406299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Real-World Versus Virtual Environments on Joint Excursions in Full-Body Reaching Tasks.
    Thomas JS; France CR; Leitkam ST; Applegate ME; Pidcoe PE; Walkowski S
    IEEE J Transl Eng Health Med; 2016; 4():2100608. PubMed ID: 27957404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grasping trajectories in a virtual environment adhere to Weber's law.
    Ozana A; Berman S; Ganel T
    Exp Brain Res; 2018 Jun; 236(6):1775-1787. PubMed ID: 29663023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the immediate effect of the training with a virtual reality game in stroke patients according side brain injury.
    Fernandes AB; Passos JO; Brito DP; Campos TF
    NeuroRehabilitation; 2014; 35(1):39-45. PubMed ID: 24990008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor-prediction improvements after virtual rehabilitation in geriatrics: frail patients reveal different learning curves for movement and postural control.
    Kubicki A; Bonnetblanc F; Petrement G; Mourey F
    Neurophysiol Clin; 2014 Jan; 44(1):109-18. PubMed ID: 24502911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.