BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 23867219)

  • 1. Prostate cancer metastases alter bone mineral and matrix composition independent of effects on bone architecture in mice--a quantitative study using microCT and Raman spectroscopy.
    Bi X; Sterling JA; Merkel AR; Perrien DS; Nyman JS; Mahadevan-Jansen A
    Bone; 2013 Oct; 56(2):454-60. PubMed ID: 23867219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines.
    Wu TT; Sikes RA; Cui Q; Thalmann GN; Kao C; Murphy CF; Yang H; Zhau HE; Balian G; Chung LW
    Int J Cancer; 1998 Sep; 77(6):887-94. PubMed ID: 9714059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone metastatic LNCaP-derivative C4-2B prostate cancer cell line mineralizes in vitro.
    Lin DL; Tarnowski CP; Zhang J; Dai J; Rohn E; Patel AH; Morris MD; Keller ET
    Prostate; 2001 May; 47(3):212-21. PubMed ID: 11351351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prostate cancer cells promote osteoblastic bone metastases through Wnts.
    Hall CL; Bafico A; Dai J; Aaronson SA; Keller ET
    Cancer Res; 2005 Sep; 65(17):7554-60. PubMed ID: 16140917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-CT combined with bioluminescence imaging: a dynamic approach to detect early tumor-bone interaction in a tumor osteolysis murine model.
    Fritz V; Louis-Plence P; Apparailly F; Noël D; Voide R; Pillon A; Nicolas JC; Müller R; Jorgensen C
    Bone; 2007 Apr; 40(4):1032-40. PubMed ID: 17251073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new murine model of osteoblastic/osteolytic lesions from human androgen-resistant prostate cancer.
    Fradet A; Sorel H; Depalle B; Serre CM; Farlay D; Turtoi A; Bellahcene A; Follet H; Castronovo V; Clézardin P; Bonnelye E
    PLoS One; 2013; 8(9):e75092. PubMed ID: 24069383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel patient-derived intra-femoral xenograft model of bone metastatic prostate cancer that recapitulates mixed osteolytic and osteoblastic lesions.
    Raheem O; Kulidjian AA; Wu C; Jeong YB; Yamaguchi T; Smith KM; Goff D; Leu H; Morris SR; Cacalano NA; Masuda K; Jamieson CH; Kane CJ; Jamieson CA
    J Transl Med; 2011 Oct; 9():185. PubMed ID: 22035283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of TGF-β responsiveness in prostate stromal cells alters chemokine levels and facilitates the development of mixed osteoblastic/osteolytic bone lesions.
    Li X; Sterling JA; Fan KH; Vessella RL; Shyr Y; Hayward SW; Matrisian LM; Bhowmick NA
    Mol Cancer Res; 2012 Apr; 10(4):494-503. PubMed ID: 22290877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiculated periosteal response induced by intraosseous injection of 22Rv1 prostate cancer cells resembles subset of bone metastases in prostate cancer patients.
    Henry MD; Silva MD; Wen S; Siebert E; Solin E; Chandra S; Worland PJ
    Prostate; 2005 Dec; 65(4):347-54. PubMed ID: 16032708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of an osteolytic tumor on the three-dimensional trabecular bone morphology in an animal model.
    Kurth AA; Müller R
    Skeletal Radiol; 2001 Feb; 30(2):94-8. PubMed ID: 11310206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity.
    Kitagawa Y; Dai J; Zhang J; Keller JM; Nor J; Yao Z; Keller ET
    Cancer Res; 2005 Dec; 65(23):10921-9. PubMed ID: 16322239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined inhibition of the BMP pathway and the RANK-RANKL axis in a mixed lytic/blastic prostate cancer lesion.
    Virk MS; Alaee F; Petrigliano FA; Sugiyama O; Chatziioannou AF; Stout D; Dougall WC; Lieberman JR
    Bone; 2011 Mar; 48(3):578-87. PubMed ID: 21073986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of mineralized bone response to prostate cancer by noninvasive in vivo microCT and non-destructive ex vivo microCT and DXA in a mouse model.
    Ravoori M; Czaplinska AJ; Sikes C; Han L; Johnson EM; Qiao W; Ng C; Cody DD; Murphy WA; Do KA; Navone NM; Kundra V
    PLoS One; 2010 Mar; 5(3):e9854. PubMed ID: 20360964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Raman spectral markers to assess metastatic bone in breast cancer.
    Ding H; Nyman JS; Sterling JA; Perrien DS; Mahadevan-Jansen A; Bi X
    J Biomed Opt; 2014; 19(11):111606. PubMed ID: 24933683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy demonstrates prolonged alteration of bone chemical composition following extremity localized irradiation.
    Gong B; Oest ME; Mann KA; Damron TA; Morris MD
    Bone; 2013 Nov; 57(1):252-8. PubMed ID: 23978492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IGF-I secretion by prostate carcinoma cells does not alter tumor-bone cell interactions in vitro or in vivo.
    Rubin J; Fan X; Rahnert J; Sen B; Hsieh CL; Murphy TC; Nanes MS; Horton LG; Beamer WG; Rosen CJ
    Prostate; 2006 Jun; 66(8):789-800. PubMed ID: 16482567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoprotegerin in prostate cancer bone metastasis.
    Corey E; Brown LG; Kiefer JA; Quinn JE; Pitts TE; Blair JM; Vessella RL
    Cancer Res; 2005 Mar; 65(5):1710-8. PubMed ID: 15753366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the effects of mixed osteolytic/osteoblastic metastasis on vertebral bone quality in a new rat model.
    Wise-Milestone L; Akens MK; Rosol TJ; Hojjat SP; Grynpas MD; Whyne CM
    J Orthop Res; 2012 May; 30(5):817-23. PubMed ID: 22025272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host-derived RANKL is responsible for osteolysis in a C4-2 human prostate cancer xenograft model of experimental bone metastases.
    Morrissey C; Kostenuik PL; Brown LG; Vessella RL; Corey E
    BMC Cancer; 2007 Aug; 7():148. PubMed ID: 17683568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.