These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Comparative analysis of the 1H NMR relaxation enhancement produced by iron oxide and core-shell iron-iron oxide nanoparticles. Miguel OB; Gossuin Y; Morales MP; Gillis P; Muller RN; Veintemillas-Verdaguer S Magn Reson Imaging; 2007 Dec; 25(10):1437-41. PubMed ID: 17566686 [TBL] [Abstract][Full Text] [Related]
4. Iron oxide-based nanoparticles with different mean sizes obtained by the laser pyrolysis: structural and magnetic properties. Morjan I; Alexandrescu R; Dumitrache F; Birjega R; Fleaca C; Soare I; Luculescu CR; Filoti G; Kuncer V; Vekas L; Popa NC; Prodan G; Ciupina V J Nanosci Nanotechnol; 2010 Feb; 10(2):1223-34. PubMed ID: 20352781 [TBL] [Abstract][Full Text] [Related]
5. Structural characterization and self-assembly into superlattices of iron oxide-gold core-shell nanoparticles synthesized via a high-temperature organometallic route. Chiang IC; Chen DH Nanotechnology; 2009 Jan; 20(1):015602. PubMed ID: 19417256 [TBL] [Abstract][Full Text] [Related]
6. Continuous production of water dispersible carbon-iron nanocomposites by laser pyrolysis: application as MRI contrasts. Leconte Y; Veintemillas-Verdaguer S; Morales MP; Costo R; Rodríguez I; Bonville P; Bouchet-Fabre B; Herlin-Boime N J Colloid Interface Sci; 2007 Sep; 313(2):511-8. PubMed ID: 17570386 [TBL] [Abstract][Full Text] [Related]
7. Use of a polyol liquid collection medium to obtain ultrasmall magnetic nanoparticles by laser pyrolysis. Martínez G; Malumbres A; Mallada R; Hueso JL; Irusta S; Bomatí-Miguel O; Santamaría J Nanotechnology; 2012 Oct; 23(42):425605. PubMed ID: 23037862 [TBL] [Abstract][Full Text] [Related]
8. Core-shell NaYF4:Yb3+,Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Xia A; Gao Y; Zhou J; Li C; Yang T; Wu D; Wu L; Li F Biomaterials; 2011 Oct; 32(29):7200-8. PubMed ID: 21742376 [TBL] [Abstract][Full Text] [Related]
9. Long-term investigation on the phase stability, magnetic behavior, toxicity, and MRI characteristics of superparamagnetic Fe/Fe-oxide core/shell nanoparticles. Masoudi A; Hosseini HR; Reyhani SM; Shokrgozar MA; Oghabian MA; Ahmadi R Int J Pharm; 2012 Dec; 439(1-2):28-40. PubMed ID: 23058926 [TBL] [Abstract][Full Text] [Related]
10. Rapid Millifluidic Synthesis of Stable High Magnetic Moment Fe Loizou K; Mourdikoudis S; Sergides A; Besenhard MO; Sarafidis C; Higashimine K; Kalogirou O; Maenosono S; Thanh NTK; Gavriilidis A ACS Appl Mater Interfaces; 2020 Jun; 12(25):28520-28531. PubMed ID: 32379412 [TBL] [Abstract][Full Text] [Related]
11. Superparamagnetic Fe3O4SiO2 nanocomposites: enabling the tuning of both the iron oxide load and the size of the nanoparticles. Stjerndahl M; Andersson M; Hall HE; Pajerowski DM; Meisel MW; Duran RS Langmuir; 2008 Apr; 24(7):3532-6. PubMed ID: 18312010 [TBL] [Abstract][Full Text] [Related]
12. Ultrasmall iron oxide nanoparticles for biomedical applications: improving the colloidal and magnetic properties. Costo R; Bello V; Robic C; Port M; Marco JF; Puerto Morales M; Veintemillas-Verdaguer S Langmuir; 2012 Jan; 28(1):178-85. PubMed ID: 22103685 [TBL] [Abstract][Full Text] [Related]
13. [Preparation and characterization of superparamagnetic iron oxide nanoparticles]. Liu ST; Yan Y; Chen ZL; Zhang YZ; Jin X Nan Fang Yi Ke Da Xue Xue Bao; 2006 Mar; 26(3):331-4. PubMed ID: 16546740 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles. Boguslavsky Y; Margel S J Colloid Interface Sci; 2008 Jan; 317(1):101-14. PubMed ID: 17927999 [TBL] [Abstract][Full Text] [Related]
15. High-temperature stable, iron-based core-shell catalysts for ammonia decomposition. Feyen M; Weidenthaler C; Güttel R; Schlichte K; Holle U; Lu AH; Schüth F Chemistry; 2011 Jan; 17(2):598-605. PubMed ID: 21207578 [TBL] [Abstract][Full Text] [Related]
16. Size control and characterization of wustite (core)/spinel (shell) nanocubes obtained by decomposition of iron oleate complex. Hai HT; Yang HT; Kura H; Hasegawa D; Ogata Y; Takahashi M; Ogawa T J Colloid Interface Sci; 2010 Jun; 346(1):37-42. PubMed ID: 20219207 [TBL] [Abstract][Full Text] [Related]
17. One-pot synthesis of pegylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Lutz JF; Stiller S; Hoth A; Kaufner L; Pison U; Cartier R Biomacromolecules; 2006 Nov; 7(11):3132-8. PubMed ID: 17096542 [TBL] [Abstract][Full Text] [Related]
18. Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labeling, and cell sorting agents. Groman EV; Bouchard JC; Reinhardt CP; Vaccaro DE Bioconjug Chem; 2007; 18(6):1763-71. PubMed ID: 17941682 [TBL] [Abstract][Full Text] [Related]
19. Iron oxide nanoparticles embedded onto 3D mesochannels of KIT-6 with different pore diameters and their excellent magnetic properties. Alam S; Anand C; Zaidi SM; Naidu TS; Al-Deyab SS; Vinu A Chem Asian J; 2011 Mar; 6(3):834-41. PubMed ID: 21344658 [TBL] [Abstract][Full Text] [Related]
20. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. Kim BH; Lee N; Kim H; An K; Park YI; Choi Y; Shin K; Lee Y; Kwon SG; Na HB; Park JG; Ahn TY; Kim YW; Moon WK; Choi SH; Hyeon T J Am Chem Soc; 2011 Aug; 133(32):12624-31. PubMed ID: 21744804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]