These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 23867323)
21. Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures. Roca AG; Carmona D; Miguel-Sancho N; Bomatí-Miguel O; Balas F; Piquer C; Santamaría J Nanotechnology; 2012 Apr; 23(15):155603. PubMed ID: 22456200 [TBL] [Abstract][Full Text] [Related]
22. Effect of surface modification on magnetization of iron oxide nanoparticle colloids. Yuan Y; Rende D; Altan CL; Bucak S; Ozisik R; Borca-Tasciuc DA Langmuir; 2012 Sep; 28(36):13051-9. PubMed ID: 22889238 [TBL] [Abstract][Full Text] [Related]
23. Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrast T1- and T2-weighted magnetic resonance imaging. Hu F; Jia Q; Li Y; Gao M Nanotechnology; 2011 Jun; 22(24):245604. PubMed ID: 21508500 [TBL] [Abstract][Full Text] [Related]
24. Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging. Bomatí-Miguel O; Morales MP; Tartaj P; Ruiz-Cabello J; Bonville P; Santos M; Zhao X; Veintemillas-Verdaguer S Biomaterials; 2005 Oct; 26(28):5695-703. PubMed ID: 15878375 [TBL] [Abstract][Full Text] [Related]
25. The Effect of Polyol Composition on the Structural and Magnetic Properties of Magnetite Nanoparticles for Magnetic Particle Hyperthermia. Kotoulas A; Dendrinou-Samara C; Angelakeris M; Kalogirou O Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31438616 [TBL] [Abstract][Full Text] [Related]
26. Controlled synthesis of thorium and uranium oxide nanocrystals. Hudry D; Apostolidis C; Walter O; Gouder T; Courtois E; Kübel C; Meyer D Chemistry; 2013 Apr; 19(17):5297-305. PubMed ID: 23460380 [TBL] [Abstract][Full Text] [Related]
27. Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging. Zeng L; Ren W; Zheng J; Cui P; Wu A Phys Chem Chem Phys; 2012 Feb; 14(8):2631-6. PubMed ID: 22273844 [TBL] [Abstract][Full Text] [Related]
29. Sizing by weighing: characterizing sizes of ultrasmall-sized iron oxide nanocrystals using MALDI-TOF mass spectrometry. Kim BH; Shin K; Kwon SG; Jang Y; Lee HS; Lee H; Jun SW; Lee J; Han SY; Yim YH; Kim DH; Hyeon T J Am Chem Soc; 2013 Feb; 135(7):2407-10. PubMed ID: 23356417 [TBL] [Abstract][Full Text] [Related]
30. Short-chain PEG molecules strongly bound to magnetic nanoparticle for MRI long circulating agents. Ruiz A; Salas G; Calero M; Hernández Y; Villanueva A; Herranz F; Veintemillas-Verdaguer S; Martínez E; Barber DF; Morales MP Acta Biomater; 2013 May; 9(5):6421-30. PubMed ID: 23321305 [TBL] [Abstract][Full Text] [Related]
31. Synthesis of amorphous silicon carbide nanoparticles in a low temperature low pressure plasma reactor. Lin H; Gerbec JA; Sushchikh M; McFarland EW Nanotechnology; 2008 Aug; 19(32):325601. PubMed ID: 21828814 [TBL] [Abstract][Full Text] [Related]
32. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. Wu SH; Chen DH J Colloid Interface Sci; 2003 Mar; 259(2):282-6. PubMed ID: 16256507 [TBL] [Abstract][Full Text] [Related]
33. Controlled synthesis and size-dependent thermal conductivity of Fe3O4 magnetic nanofluids. Wang B; Wang B; Wei P; Wang X; Lou W Dalton Trans; 2012 Jan; 41(3):896-9. PubMed ID: 22086086 [TBL] [Abstract][Full Text] [Related]
34. Facile production of stable silicon nanoparticles: laser chemistry coupled to in situ stabilization via room temperature hydrosilylation. Malumbres A; Martínez G; Hueso JL; Gracia J; Mallada R; Ibarra A; Santamaría J Nanoscale; 2015 May; 7(18):8566-73. PubMed ID: 25898392 [TBL] [Abstract][Full Text] [Related]
36. Preparation and characterization of hollow carbon nanospheres supported metallic catalysts by using one-step pyrolysis method. Ding Y; Xia XH J Nanosci Nanotechnol; 2008 Mar; 8(3):1512-7. PubMed ID: 18468183 [TBL] [Abstract][Full Text] [Related]
37. Influence of experimental parameters on iron oxide nanoparticle properties synthesized by thermal decomposition: size and nuclear magnetic resonance studies. Belaïd S; Stanicki D; Vander Elst L; Muller RN; Laurent S Nanotechnology; 2018 Apr; 29(16):165603. PubMed ID: 29485102 [TBL] [Abstract][Full Text] [Related]
38. First synthesis by liquid-liquid phase transfer of magnetic CoxPt100-x nanoalloys. Demortière A; Petit C Langmuir; 2007 Jul; 23(16):8575-84. PubMed ID: 17602507 [TBL] [Abstract][Full Text] [Related]
39. Synthesis and cytotoxicity assessment of superparamagnetic iron-gold core-shell nanoparticles coated with polyglycerol. Jafari T; Simchi A; Khakpash N J Colloid Interface Sci; 2010 May; 345(1):64-71. PubMed ID: 20153479 [TBL] [Abstract][Full Text] [Related]
40. A Modular Millifluidic Platform for the Synthesis of Iron Oxide Nanoparticles with Control over Dissolved Gas and Flow Configuration. Panariello L; Wu G; Besenhard MO; Loizou K; Storozhuk L; Thanh NTK; Gavriilidis A Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32106389 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]