These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 23867823)

  • 1. Single particle tracking of dynamically localizing TatA complexes in Streptomyces coelicolor.
    Celler K; van Wezel GP; Willemse J
    Biochem Biophys Res Commun; 2013 Aug; 438(1):38-42. PubMed ID: 23867823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic localization of Tat protein transport machinery components in Streptomyces coelicolor.
    Willemse J; Ruban-Ośmialowska B; Widdick D; Celler K; Hutchings MI; van Wezel GP; Palmer T
    J Bacteriol; 2012 Nov; 194(22):6272-81. PubMed ID: 23002216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural organization of the twin-arginine translocation system in Streptomyces lividans.
    De Keersmaeker S; Van Mellaert L; Schaerlaekens K; Van Dessel W; Vrancken K; Lammertyn E; Anné J; Geukens N
    FEBS Lett; 2005 Jan; 579(3):797-802. PubMed ID: 15670849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Escherichia coli twin-arginine translocation apparatus incorporates a distinct form of TatABC complex, spectrum of modular TatA complexes and minor TatAB complex.
    Oates J; Barrett CM; Barnett JP; Byrne KG; Bolhuis A; Robinson C
    J Mol Biol; 2005 Feb; 346(1):295-305. PubMed ID: 15663945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of functional Tat translocases from heterologous components.
    Hicks MG; Guymer D; Buchanan G; Widdick DA; Caldelari I; Berks BC; Palmer T
    BMC Microbiol; 2006 Jul; 6():64. PubMed ID: 16854235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The core TatABC complex of the twin-arginine translocase in Escherichia coli: TatC drives assembly whereas TatA is essential for stability.
    Mangels D; Mathers J; Bolhuis A; Robinson C
    J Mol Biol; 2005 Jan; 345(2):415-23. PubMed ID: 15571732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor.
    Widdick DA; Dilks K; Chandra G; Bottrill A; Naldrett M; Pohlschröder M; Palmer T
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17927-32. PubMed ID: 17093047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for interactions between domains of TatA and TatB from mutagenesis of the TatABC subunits of the twin-arginine translocase.
    Barrett CM; Robinson C
    FEBS J; 2005 May; 272(9):2261-75. PubMed ID: 15853811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in subunits of the Escherichia coli twin-arginine translocase block function via differing effects on translocation activity or tat complex structure.
    Barrett CM; Mangels D; Robinson C
    J Mol Biol; 2005 Mar; 347(2):453-63. PubMed ID: 15740752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of TatA and TatB in Streptomyces lividans.
    De Keersmaeker S; Van Mellaert L; Lammertyn E; Vrancken K; Anné J; Geukens N
    Biochem Biophys Res Commun; 2005 Sep; 335(3):973-82. PubMed ID: 16111662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The TatBC complex formation suppresses a modular TatB-multimerization in Escherichia coli.
    Behrendt J; Lindenstrauss U; Brüser T
    FEBS Lett; 2007 Aug; 581(21):4085-90. PubMed ID: 17678896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Twin-arginine-specific protein export in Escherichia coli.
    Müller M
    Res Microbiol; 2005 Mar; 156(2):131-6. PubMed ID: 15748976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution NMR structure of the TatA component of the twin-arginine protein transport system from gram-positive bacterium Bacillus subtilis.
    Hu Y; Zhao E; Li H; Xia B; Jin C
    J Am Chem Soc; 2010 Nov; 132(45):15942-4. PubMed ID: 20726548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twin-arginine translocation pathway in Streptomyces lividans.
    Schaerlaekens K; Schierová M; Lammertyn E; Geukens N; Anné J; Van Mellaert L
    J Bacteriol; 2001 Dec; 183(23):6727-32. PubMed ID: 11698358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of the twin-arginine translocation pathway in Corynebacterium glutamicum ATCC 13869.
    Kikuchi Y; Date M; Itaya H; Matsui K; Wu LF
    Appl Environ Microbiol; 2006 Nov; 72(11):7183-92. PubMed ID: 16997984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein translocation without specific quality control in a computational model of the Tat system.
    Nayak CR; Brown AI; Rutenberg AD
    Phys Biol; 2014 Aug; 11(5):056005. PubMed ID: 25154305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the twin arginine protein transport pathway in the assembly of the Streptomyces coelicolor cytochrome bc1 complex.
    Hopkins A; Buchanan G; Palmer T
    J Bacteriol; 2014 Jan; 196(1):50-9. PubMed ID: 24142258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria.
    Meissner D; Vollstedt A; van Dijl JM; Freudl R
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):633-42. PubMed ID: 17453196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of the twin-arginine translocation pathway for bacterial virulence.
    De Buck E; Lammertyn E; Anné J
    Trends Microbiol; 2008 Sep; 16(9):442-53. PubMed ID: 18715784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myxococcus xanthus twin-arginine translocation system is important for growth and development.
    Kimura Y; Saiga H; Hamanaka H; Matoba H
    Arch Microbiol; 2006 Feb; 184(6):387-96. PubMed ID: 16331440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.