These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 23867823)

  • 21. The Rieske protein from Paracoccus denitrificans is inserted into the cytoplasmic membrane by the twin-arginine translocase.
    Bachmann J; Bauer B; Zwicker K; Ludwig B; Anderka O
    FEBS J; 2006 Nov; 273(21):4817-30. PubMed ID: 16987314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Secretory production of an FAD cofactor-containing cytosolic enzyme (sorbitol-xylitol oxidase from Streptomyces coelicolor) using the twin-arginine translocation (Tat) pathway of Corynebacterium glutamicum.
    Scheele S; Oertel D; Bongaerts J; Evers S; Hellmuth H; Maurer KH; Bott M; Freudl R
    Microb Biotechnol; 2013 Mar; 6(2):202-6. PubMed ID: 23163932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigating lipoprotein biogenesis and function in the model Gram-positive bacterium Streptomyces coelicolor.
    Thompson BJ; Widdick DA; Hicks MG; Chandra G; Sutcliffe IC; Palmer T; Hutchings MI
    Mol Microbiol; 2010 Aug; 77(4):943-57. PubMed ID: 20572939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The twin-arginine translocation pathway is necessary for correct membrane insertion of the Rieske Fe/S protein in Legionella pneumophila.
    De Buck E; Vranckx L; Meyen E; Maes L; Vandersmissen L; Anné J; Lammertyn E
    FEBS Lett; 2007 Jan; 581(2):259-64. PubMed ID: 17188684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel twin-arginine translocation pathway-dependent phenotypes of Bacillus subtilis unveiled by quantitative proteomics.
    Goosens VJ; Otto A; Glasner C; Monteferrante CC; van der Ploeg R; Hecker M; Becher D; van Dijl JM
    J Proteome Res; 2013 Feb; 12(2):796-807. PubMed ID: 23256564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mapping the twin-arginine protein translocation network of Bacillus subtilis.
    Monteferrante CG; MacKichan C; Marchadier E; Prejean MV; Carballido-López R; van Dijl JM
    Proteomics; 2013 Mar; 13(5):800-11. PubMed ID: 23180473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated analysis of time-lapse fluorescence microscopy images: from live cell images to intracellular foci.
    Dzyubachyk O; Essers J; van Cappellen WA; Baldeyron C; Inagaki A; Niessen WJ; Meijering E
    Bioinformatics; 2010 Oct; 26(19):2424-30. PubMed ID: 20702399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Imaging of Streptomyces coelicolor A3(2) with reduced autofluorescence reveals a novel stage of FtsZ localization.
    Willemse J; van Wezel GP
    PLoS One; 2009; 4(1):e4242. PubMed ID: 19156202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determining the functionality of putative Tat-dependent signal peptides in Streptomyces coelicolor A3(2) by using two different reporter proteins.
    Li H; Jacques PÉ; Ghinet MG; Brzezinski R; Morosoli R
    Microbiology (Reading); 2005 Jul; 151(Pt 7):2189-2198. PubMed ID: 16000709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence Time-lapse Imaging of the Complete S. venezuelae Life Cycle Using a Microfluidic Device.
    Schlimpert S; Flärdh K; Buttner J
    J Vis Exp; 2016 Feb; (108):53863. PubMed ID: 26967231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diatrack particle tracking software: Review of applications and performance evaluation.
    Vallotton P; van Oijen AM; Whitchurch CB; Gelfand V; Yeo L; Tsiavaliaris G; Heinrich S; Dultz E; Weis K; Grünwald D
    Traffic; 2017 Dec; 18(12):840-852. PubMed ID: 28945316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pooled protein tagging, cellular imaging, and in situ sequencing for monitoring drug action in real time.
    Reicher A; Koren A; Kubicek S
    Genome Res; 2020 Dec; 30(12):1846-1855. PubMed ID: 33203764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell cycle dependence of protein subcellular location inferred from static, asynchronous images.
    Buck TE; Rao A; Coelho LP; Fuhrman MH; Jarvik JW; Berget PB; Murphy RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1016-9. PubMed ID: 19963740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Objective comparison of particle tracking methods.
    Chenouard N; Smal I; de Chaumont F; Maška M; Sbalzarini IF; Gong Y; Cardinale J; Carthel C; Coraluppi S; Winter M; Cohen AR; Godinez WJ; Rohr K; Kalaidzidis Y; Liang L; Duncan J; Shen H; Xu Y; Magnusson KE; Jaldén J; Blau HM; Paul-Gilloteaux P; Roudot P; Kervrann C; Waharte F; Tinevez JY; Shorte SL; Willemse J; Celler K; van Wezel GP; Dan HW; Tsai YS; Ortiz de Solórzano C; Olivo-Marin JC; Meijering E
    Nat Methods; 2014 Mar; 11(3):281-9. PubMed ID: 24441936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro tracking and intracellular protein distribution in immunology.
    Zibaei K; Russell SM
    Immunol Cell Biol; 2017 Jul; 95(6):501-505. PubMed ID: 28392557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative analysis of dynamic association in live biological fluorescent samples.
    Ruusuvuori P; Paavolainen L; Rutanen K; Mäki A; Huttunen H; Marjomäki V
    PLoS One; 2014; 9(4):e94245. PubMed ID: 24728133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BNP-Track: A framework for multi-particle superresolved tracking.
    Xu LWQ; Sgouralis I; Kilic Z; Pressé S
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-Object Portion Tracking in 4D Fluorescence Microscopy Imagery with Deep Feature Maps.
    Jiao Y; Weng M; Yang M
    Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit; 2019 Jun; 2019():1087-1096. PubMed ID: 32565667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glucocorticoids inhibit macrophage differentiation towards a pro-inflammatory phenotype upon wounding without affecting their migration.
    Xie Y; Tolmeijer S; Oskam JM; Tonkens T; Meijer AH; Schaaf MJM
    Dis Model Mech; 2019 May; 12(5):. PubMed ID: 31072958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of poly-β-1,6-N-acetylglucosamine by MatAB is required for hyphal aggregation and hydrophilic surface adhesion by
    van Dissel D; Willemse J; Zacchetti B; Claessen D; Pier GB; van Wezel GP
    Microb Cell; 2018 Feb; 5(6):269-279. PubMed ID: 29850464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.