These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 2386805)
1. Theoretical studies on the conformation of saccharides. XIV. Structure and conformational properties of the glycosylamines. Kozár T; Tvaroska I Biopolymers; 1990; 29(12-13):1531-9. PubMed ID: 2386805 [TBL] [Abstract][Full Text] [Related]
2. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling. Perić-Hassler L; Hansen HS; Baron R; Hünenberger PH Carbohydr Res; 2010 Aug; 345(12):1781-801. PubMed ID: 20576257 [TBL] [Abstract][Full Text] [Related]
3. PCILO quantum-mechanical relaxed conformational energy map of methyl 4-thio-alpha-maltoside in solution. Mazeau K; Tvaroska I Carbohydr Res; 1992 Feb; 225(1):27-41. PubMed ID: 1633603 [TBL] [Abstract][Full Text] [Related]
4. Conformational investigation of alpha,beta-dehydropeptides. XV: N-acetyl-alpha,beta-dehydroamino acid N 'N '-dimethylamides: conformational properties from infrared and theoretical studies. Broda MA; Siodłak D; Rzeszotarska B J Pept Sci; 2005 Sep; 11(9):546-55. PubMed ID: 15782429 [TBL] [Abstract][Full Text] [Related]
5. Conformational study of digalacturonic acid and sodium digalacturonate in solution. Gouvion C; Mazeau K; Heyraud A; Taravel FR; Tvaroska I Carbohydr Res; 1994 Aug; 261(2):187-202. PubMed ID: 7954511 [TBL] [Abstract][Full Text] [Related]
6. The influence of the hexopyranose ring geometry on the conformation of glycosidic linkages investigated using molecular dynamics simulations. Plazinski W; Drach M Carbohydr Res; 2015 Oct; 415():17-27. PubMed ID: 26279522 [TBL] [Abstract][Full Text] [Related]
7. Solvation shell structure of cyclooctylpyranone in water solvent and its comparative structure, dynamics and dipole moment in HIV protease. Arul Murugan N; Chandra Jha P; Agren H Phys Chem Chem Phys; 2009 Aug; 11(30):6482-9. PubMed ID: 19809680 [TBL] [Abstract][Full Text] [Related]
8. Disaccharide conformational flexibility. I. An adiabatic potential energy map for sucrose. Tran VH; Brady JW Biopolymers; 1990; 29(6-7):961-76. PubMed ID: 2369624 [TBL] [Abstract][Full Text] [Related]
9. DFT studies of the disaccharide, alpha-maltose: relaxed isopotential maps. Schnupf U; Willett JL; Bosma WB; Momany FA Carbohydr Res; 2007 Nov; 342(15):2270-85. PubMed ID: 17669381 [TBL] [Abstract][Full Text] [Related]
10. On the generalized valence bond description of the anomeric and exo-anomeric effects: an ab initio conformational study of 2-methoxytetrahydropyran. Bitzer RS; Barbosa AG; da Silva CO; Nascimento MA Carbohydr Res; 2005 Sep; 340(13):2171-84. PubMed ID: 16054606 [TBL] [Abstract][Full Text] [Related]
11. The solvent polarity dependent conformational equilibrium of the carboxylic ionophore narasin: a proton NMR study. Caughey B; Painter G; Pressman BC; Gibbons WA Biochem Biophys Res Commun; 1983 Jun; 113(3):832-8. PubMed ID: 6307303 [TBL] [Abstract][Full Text] [Related]
12. Solution behavior of methyl beta-xylobioside: conformational flexibility revealed by n.m.r. measurements and theoretical calculations. Hricovíni M; Tvaroska I; Hirsch J Carbohydr Res; 1990 May; 198(2):193-203. PubMed ID: 2379185 [TBL] [Abstract][Full Text] [Related]
14. The (alpha-1,6) glycosidic bond of isomaltose: a tricky system for theoretical conformational studies. Javaroni F; Ferreira AB; da Silva CO Carbohydr Res; 2009 Jul; 344(10):1235-47. PubMed ID: 19508914 [TBL] [Abstract][Full Text] [Related]
15. Conformational studies of diosgenyl 2-amino-2-deoxy-β-D-glucopyranosides at the PM3 and DFT levels of theory. Nowacki A; Myszka H; Liberek B Carbohydr Res; 2013 Aug; 377():4-13. PubMed ID: 23770522 [TBL] [Abstract][Full Text] [Related]
16. DFT conformational studies of alpha-maltotriose. Schnupf U; Willett JL; Bosma WB; Momany FA J Comput Chem; 2008 May; 29(7):1103-12. PubMed ID: 18069685 [TBL] [Abstract][Full Text] [Related]
17. Conformational analysis of cellobiose by electronic structure theories. French AD; Johnson GP; Cramer CJ; Csonka GI Carbohydr Res; 2012 Mar; 350():68-76. PubMed ID: 22265378 [TBL] [Abstract][Full Text] [Related]
18. Modelling studies of solvent effects on the conformational stability of agarobiose and neoagarobiose and their relationship to agarose. Jimenez-Barbero J; Bouffar-Roupe C; Rochas C; Pérez S Int J Biol Macromol; 1989 Oct; 11(5):265-72. PubMed ID: 2489091 [TBL] [Abstract][Full Text] [Related]
19. Quantum chemical studies of meperidine and prodine. Loew GH; Jester JR J Med Chem; 1975 Nov; 18(11):1051-6. PubMed ID: 1177250 [TBL] [Abstract][Full Text] [Related]
20. Conformational studies on the selectin and natural killer cell receptor ligands sulfo- and sialyl-lacto-N-fucopentaoses (SuLNFPII and SLNFPII) using NMR spectroscopy and molecular dynamics simulations. Comparisons with the nonacidic parent molecule LNFPII. Kogelberg H; Frenkiel TA; Homans SW; Lubineau A; Feizi T Biochemistry; 1996 Feb; 35(6):1954-64. PubMed ID: 8639679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]