BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23868832)

  • 1. TiO2 (B)/anatase composites synthesized by spray drying as high performance negative electrode material in li-ion batteries.
    Ventosa E; Mei B; Xia W; Muhler M; Schuhmann W
    ChemSusChem; 2013 Aug; 6(8):1312-5. PubMed ID: 23868832
    [No Abstract]   [Full Text] [Related]  

  • 2. Low temperature hydrogen reduction of high surface area anatase and anatase/β-TiO₂ for high-charging-rate batteries.
    Ventosa E; Tymoczko A; Xie K; Xia W; Muhler M; Schuhmann W
    ChemSusChem; 2014 Sep; 7(9):2584-9. PubMed ID: 25044925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Titania@Carbon Nanocomposite from Urea-Impregnated Cellulose for Efficient Lithium and Sodium Batteries.
    Henry A; Louvain N; Fontaine O; Stievano L; Monconduit L; Boury B
    ChemSusChem; 2016 Feb; 9(3):264-73. PubMed ID: 26812587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfidated TiO2 nanotubes: a potential 3D cathode material for Li-ion micro batteries.
    Kyeremateng NA; Plylahan N; dos Santos AC; Taveira LV; Dick LF; Djenizian T
    Chem Commun (Camb); 2013 May; 49(39):4205-7. PubMed ID: 23165523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TiO2/graphene sandwich paper as an anisotropic electrode for high rate lithium ion batteries.
    Li N; Zhou G; Fang R; Li F; Cheng HM
    Nanoscale; 2013 Sep; 5(17):7780-4. PubMed ID: 23860518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical porous anatase TiO2 derived from a titanium metal-organic framework as a superior anode material for lithium ion batteries.
    Xiu Z; Alfaruqi MH; Gim J; Song J; Kim S; Vu Thi T; Duong PT; Baboo JP; Mathew V; Kim J
    Chem Commun (Camb); 2015 Aug; 51(61):12274-7. PubMed ID: 26137998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ synthesis of TiO2(B) nanotube/nanoparticle composite anode materials for lithium ion batteries.
    Liu X; Sun Q; Ng AM; Djurišić AB; Xie M; Liao C; Shih K; Vranješ M; Nedeljković JM; Deng Z
    Nanotechnology; 2015 Oct; 26(42):425403. PubMed ID: 26421360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoporous anatase TiO2 nanorods as thermally robust anode materials for Li-ion batteries: detailed insight into the formation mechanism.
    Seisenbaeva GA; Nedelec JM; Daniel G; Tiseanu C; Parvulescu V; Pol VG; Abrego L; Kessler VG
    Chemistry; 2013 Dec; 19(51):17439-44. PubMed ID: 24243542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-doped dual phase Li4Ti5O12-TiO2 nanosheets as high-rate and long cycle life anodes for high-power lithium-ion batteries.
    Chen C; Huang Y; An C; Zhang H; Wang Y; Jiao L; Yuan H
    ChemSusChem; 2015 Jan; 8(1):114-22. PubMed ID: 25425492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries.
    Zhou M; Pu F; Wang Z; Cai T; Chen H; Zhang H; Guan S
    Phys Chem Chem Phys; 2013 Jul; 15(27):11394-401. PubMed ID: 23740151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatase TiO
    Maroni F; Carbonari G; Croce F; Tossici R; Nobili F
    ChemSusChem; 2017 Dec; 10(23):4771-4777. PubMed ID: 28881495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zr4+ doping in Li4Ti5O12 anode for lithium-ion batteries: open Li+ diffusion paths through structural imperfection.
    Kim JG; Park MS; Hwang SM; Heo YU; Liao T; Sun Z; Park JH; Kim KJ; Jeong G; Kim YJ; Kim JH; Dou SX
    ChemSusChem; 2014 May; 7(5):1451-7. PubMed ID: 24700792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic layer-by-layer Co-mineralization approach towards TiO2/Au nanosheets with high rate performance for lithium ion batteries.
    Hao B; Yan Y; Wang X; Chen G
    Nanoscale; 2013 Nov; 5(21):10472-80. PubMed ID: 24057028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries.
    Tang Y; Zhang Y; Deng J; Qi D; Leow WR; Wei J; Yin S; Dong Z; Yazami R; Chen Z; Chen X
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13488-92. PubMed ID: 25168684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries.
    Jo MR; Jung YS; Kang YM
    Nanoscale; 2012 Nov; 4(21):6870-5. PubMed ID: 23026842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphidation of Li4Ti5O12 nanoparticles and their electrochemical and biocompatible superiority for lithium rechargeable batteries.
    Jo MR; Nam KM; Lee Y; Song K; Park JT; Kang YM
    Chem Commun (Camb); 2011 Nov; 47(41):11474-6. PubMed ID: 21952411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved lithium storage properties of electrospun TiO2 with tunable morphology: from porous anatase to necklace rutile.
    Yang Y; Wang H; Zhou Q; Kong M; Ye H; Yang G
    Nanoscale; 2013 Nov; 5(21):10267-74. PubMed ID: 24056926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template-free solvothermal synthesis of yolk-shell V2O5 microspheres as cathode materials for Li-ion batteries.
    Liu J; Zhou Y; Wang J; Pan Y; Xue D
    Chem Commun (Camb); 2011 Oct; 47(37):10380-2. PubMed ID: 21845269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly crystalline lithium titanium oxide sheets coated with nitrogen-doped carbon enable high-rate lithium-ion batteries.
    Han C; He YB; Li B; Li H; Ma J; Du H; Qin X; Yang QH; Kang F
    ChemSusChem; 2014 Sep; 7(9):2567-74. PubMed ID: 25044966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-free titania-bronze thin films with superfast lithium-ion transport.
    Zhang K; Katz MB; Li B; Kim SJ; Du X; Hao X; Jokisaari JR; Zhang S; Graham GW; Van der Ven A; Bartlett BM; Pan X
    Adv Mater; 2014 Nov; 26(43):7365-70. PubMed ID: 25244308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.