These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 23868837)
41. Partial link between the seasonal acquisition of cold-tolerance and desiccation resistance in the goldenrod gall fly Eurosta solidaginis (Diptera: Tephritidae). Williams JB; Ruehl NC; Lee RE J Exp Biol; 2004 Dec; 207(Pt 25):4407-14. PubMed ID: 15557026 [TBL] [Abstract][Full Text] [Related]
42. Detecting freeze injury and seasonal cold-hardening of cells and tissues in the gall fly larvae, Eurosta solidaginis (Diptera: Tephritidae) using fluorescent vital dyes. Yi SX; Lee RE J Insect Physiol; 2003 Nov; 49(11):999-1004. PubMed ID: 14568577 [TBL] [Abstract][Full Text] [Related]
43. Effects of diapause and cold-acclimation on the avoidance of freezing injury in fat body tissue of the rice stem borer, Chilo suppressalis Walker. Izumi Y; Sonoda S; Tsumuki H J Insect Physiol; 2007 Jul; 53(7):685-90. PubMed ID: 17543330 [TBL] [Abstract][Full Text] [Related]
45. Overwintering of the boreal butterfly Colias palaeno in central Europe. Vrba P; Dolek M; Nedved O; Zahradnickova H; Cerrato C; Konvicka M Cryo Letters; 2014; 35(3):247-54. PubMed ID: 24997843 [TBL] [Abstract][Full Text] [Related]
46. Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar. Sinclair BJ; Chown SL J Exp Biol; 2005 Mar; 208(Pt 5):869-79. PubMed ID: 15755885 [TBL] [Abstract][Full Text] [Related]
47. Desiccation tolerance and drought acclimation in the Antarctic collembolan Cryptopygus antarcticus. Elnitsky MA; Benoit JB; Denlinger DL; Lee RE J Insect Physiol; 2008; 54(10-11):1432-9. PubMed ID: 18761345 [TBL] [Abstract][Full Text] [Related]
48. Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile Deschampsia antarctica E. Desv. Chew O; Lelean S; John UP; Spangenberg GC Plant Cell Environ; 2012 Apr; 35(4):829-37. PubMed ID: 22070607 [TBL] [Abstract][Full Text] [Related]
49. Rapid responses to high temperature and desiccation but not to low temperature in the freeze tolerant sub-Antarctic caterpillar Pringleophaga marioni (Lepidoptera, Tineidae). Sinclair BJ; Chown SL J Insect Physiol; 2003 Jan; 49(1):45-52. PubMed ID: 12770015 [TBL] [Abstract][Full Text] [Related]
50. High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Lopez-Martinez G; Elnitsky MA; Benoit JB; Lee RE; Denlinger DL Insect Biochem Mol Biol; 2008 Aug; 38(8):796-804. PubMed ID: 18625403 [TBL] [Abstract][Full Text] [Related]
51. Freeze tolerance in the gray treefrog: cryoprotectant mobilization and organ dehydration. Layne JR; Jones AL J Exp Zool; 2001 Jun; 290(1):1-5. PubMed ID: 11429758 [TBL] [Abstract][Full Text] [Related]
52. Freezing and cryoprotective dehydration in an Antarctic nematode (Panagrolaimus davidi) visualised using a freeze substitution technique. Wharton DA; Downes MF; Goodall G; Marshall CJ Cryobiology; 2005 Feb; 50(1):21-8. PubMed ID: 15710366 [TBL] [Abstract][Full Text] [Related]
53. Thermal stress induces HSP70 proteins synthesis in larvae of the cold stream non-biting midge Diamesa cinerella Meigen. Lencioni V; Bernabò P; Cesari M; Rebecchi L; Cesari M Arch Insect Biochem Physiol; 2013 May; 83(1):1-14. PubMed ID: 23404797 [TBL] [Abstract][Full Text] [Related]
54. Gene expression changes governing extreme dehydration tolerance in an Antarctic insect. Teets NM; Peyton JT; Colinet H; Renault D; Kelley JL; Kawarasaki Y; Lee RE; Denlinger DL Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20744-9. PubMed ID: 23197828 [TBL] [Abstract][Full Text] [Related]
55. Genome sequencing of the winged midge, Parochlus steinenii, from the Antarctic Peninsula. Kim S; Oh M; Jung W; Park J; Choi HG; Shin SC Gigascience; 2017 Mar; 6(3):1-8. PubMed ID: 28327954 [TBL] [Abstract][Full Text] [Related]
56. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Kelley JL; Peyton JT; Fiston-Lavier AS; Teets NM; Yee MC; Johnston JS; Bustamante CD; Lee RE; Denlinger DL Nat Commun; 2014 Aug; 5():4611. PubMed ID: 25118180 [TBL] [Abstract][Full Text] [Related]
57. Cold tolerance abilities of two entomopathogenic nematodes, Steinernema feltiae and Heterorhabditis bacteriophora. Ali F; Wharton DA Cryobiology; 2013 Feb; 66(1):24-9. PubMed ID: 23142823 [TBL] [Abstract][Full Text] [Related]
58. Freezing survival and cryoprotective dehydration as cold tolerance mechanisms in the Antarctic nematode Panagrolaimus davidi. Wharton DA; Goodall G; Marshall CJ J Exp Biol; 2003 Jan; 206(Pt 2):215-21. PubMed ID: 12477892 [TBL] [Abstract][Full Text] [Related]
59. Freeze or dehydrate: only two options for the survival of subzero temperatures in the arctic enchytraeid Fridericia ratzeli. Pedersen PG; Holmstrup M J Comp Physiol B; 2003 Sep; 173(7):601-9. PubMed ID: 12898166 [TBL] [Abstract][Full Text] [Related]
60. Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg). Clark MS; Thorne MA; Purać J; Burns G; Hillyard G; Popović ZD; Grubor-Lajsić G; Worland MR BMC Genomics; 2009 Jul; 10():328. PubMed ID: 19622137 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]