These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 23869421)
1. Atrazine and Methyl Viologen Effects on Chlorophyll-a Fluorescence Revisited-Implications in Photosystems Emission and Ecotoxicity Assessment. Iriel A; Novo JM; Cordon GB; Lagorio MG Photochem Photobiol; 2014 Jan; 90(1):107-12. PubMed ID: 23869421 [TBL] [Abstract][Full Text] [Related]
2. Photochemical changes and oxidative damage in the aquatic macrophyte Cymodocea nodosa exposed to paraquat-induced oxidative stress. Moustakas M; Malea P; Zafeirakoglou A; Sperdouli I Pestic Biochem Physiol; 2016 Jan; 126():28-34. PubMed ID: 26778431 [TBL] [Abstract][Full Text] [Related]
3. Responses of photosynthesis-related parameters and chloroplast ultrastructure to atrazine in alfalfa (Medicago sativa L.) inoculated with arbuscular mycorrhizal fungi. Fan X; Chang W; Feng F; Song F Ecotoxicol Environ Saf; 2018 Dec; 166():102-108. PubMed ID: 30253284 [TBL] [Abstract][Full Text] [Related]
4. A retrieval algorithm to evaluate the Photosystem I and Photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures. Palombi L; Cecchi G; Lognoli D; Raimondi V; Toci G; Agati G Photosynth Res; 2011 Sep; 108(2-3):225-39. PubMed ID: 21866392 [TBL] [Abstract][Full Text] [Related]
5. To evaluate the toxicity of atrazine on the freshwater microalgae Chlorella sp. using sensitive indices indicated by photosynthetic parameters. Sun C; Xu Y; Hu N; Ma J; Sun S; Cao W; Klobučar G; Hu C; Zhao Y Chemosphere; 2020 Apr; 244():125514. PubMed ID: 31812061 [TBL] [Abstract][Full Text] [Related]
6. Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1. Laisk A; Oja V; Eichelmann H; Dall'Osto L Biochim Biophys Acta; 2014 Feb; 1837(2):315-25. PubMed ID: 24333386 [TBL] [Abstract][Full Text] [Related]
7. Novel effects of methyl viologen on photosystem II function in spinach leaves. Fan DY; Jia H; Barber J; Chow WS Eur Biophys J; 2009 Dec; 39(1):191-9. PubMed ID: 19495738 [TBL] [Abstract][Full Text] [Related]
8. Recovery of non-target plants affected by airborne herbicides. Follak S; Hurle K Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(3):451-63. PubMed ID: 12696412 [TBL] [Abstract][Full Text] [Related]
9. Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants. Iriel A; Dundas G; Fernández Cirelli A; Lagorio MG Chemosphere; 2015 Jan; 119():697-703. PubMed ID: 25150973 [TBL] [Abstract][Full Text] [Related]
10. Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf. Wientjes E; Philippi J; Borst JW; van Amerongen H Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):259-265. PubMed ID: 28095301 [TBL] [Abstract][Full Text] [Related]
11. Sensitivity of a green alga to atrazine is not enhanced by previous acute exposure. Baxter L; Brain R; Prosser R; Solomon K; Hanson M Environ Pollut; 2013 Oct; 181():325-8. PubMed ID: 23850402 [TBL] [Abstract][Full Text] [Related]
12. Specificity of Cd, Cu, and Fe effects on barley growth, metal contents in leaves and chloroplasts, and activities of photosystem I and photosystem II. Lysenko EA; Klaus AA; Kartashov AV; Kusnetsov VV Plant Physiol Biochem; 2020 Feb; 147():191-204. PubMed ID: 31865165 [TBL] [Abstract][Full Text] [Related]
13. The F684/F735 chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phytotoxicity in algae. Eullaffroy P; Vernet G Water Res; 2003 May; 37(9):1983-90. PubMed ID: 12691882 [TBL] [Abstract][Full Text] [Related]
14. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence. Vítek P; Novotná K; Hodaňová P; Rapantová B; Klem K Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():234-41. PubMed ID: 27450121 [TBL] [Abstract][Full Text] [Related]
15. Comparison of some adjuvants efficacy with azoprim and buramet using chlorophyll fluorescence. Skórska E; Swarcewicz M Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):141-6. PubMed ID: 17390785 [TBL] [Abstract][Full Text] [Related]
16. Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis. Kasajima I BMC Res Notes; 2017 Apr; 10(1):168. PubMed ID: 28446247 [TBL] [Abstract][Full Text] [Related]
17. Herbicides affect fluorescence and electron transfer activity of spinach chloroplasts, thylakoid membranes and isolated Photosystem II. Ventrella A; Catucci L; Agostiano A Bioelectrochemistry; 2010 Aug; 79(1):43-9. PubMed ID: 19962947 [TBL] [Abstract][Full Text] [Related]
18. Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay. Muller R; Schreiber U; Escher BI; Quayle P; Bengtson Nash SM; Mueller JF Sci Total Environ; 2008 Aug; 401(1-3):51-9. PubMed ID: 18501956 [TBL] [Abstract][Full Text] [Related]
19. Photosynthetic activity of far-red light in green plants. Pettai H; Oja V; Freiberg A; Laisk A Biochim Biophys Acta; 2005 Jul; 1708(3):311-21. PubMed ID: 15950173 [TBL] [Abstract][Full Text] [Related]
20. Characterization of target site of aluminum phytotoxicity in photosynthetic electron transport by fluorescence techniques in tobacco leaves. Li Z; Xing F; Xing D Plant Cell Physiol; 2012 Jul; 53(7):1295-309. PubMed ID: 22611177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]