These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23869434)

  • 1. Water loss control using pressure management: life-cycle energy and air emission effects.
    Stokes JR; Horvath A; Sturm R
    Environ Sci Technol; 2013 Oct; 47(19):10771-80. PubMed ID: 23869434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle implications of urban green infrastructure.
    Spatari S; Yu Z; Montalto FA
    Environ Pollut; 2011; 159(8-9):2174-9. PubMed ID: 21330022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From "farm to fork" strawberry system: current realities and potential innovative scenarios from life cycle assessment of non-renewable energy use and green house gas emissions.
    Girgenti V; Peano C; Baudino C; Tecco N
    Sci Total Environ; 2014 Mar; 473-474():48-53. PubMed ID: 24361447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of losses in water distribution systems in India.
    Raman V
    Bull World Health Organ; 1983; 61(5):867-70. PubMed ID: 6418401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and application of EEAST: a life cycle based model for use of harvested rainwater and composting toilets in buildings.
    Devkota J; Schlachter H; Anand C; Phillips R; Apul D
    J Environ Manage; 2013 Nov; 130():397-404. PubMed ID: 24141064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.
    McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL
    Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change mitigation by recovery of energy from the water cycle: a new challenge for water management.
    van der Hoek JP
    Water Sci Technol; 2012; 65(1):135-41. PubMed ID: 22173417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life cycle energy and greenhouse gas analysis of a large-scale vertically integrated organic dairy in the United States.
    Heller MC; Keoleian GA
    Environ Sci Technol; 2011 Mar; 45(5):1903-10. PubMed ID: 21348530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.
    Damgaard A; Riber C; Fruergaard T; Hulgaard T; Christensen TH
    Waste Manag; 2010 Jul; 30(7):1244-50. PubMed ID: 20378326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae.
    Luo D; Hu Z; Choi DG; Thomas VM; Realff MJ; Chance RR
    Environ Sci Technol; 2010 Nov; 44(22):8670-7. PubMed ID: 20968295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil.
    Bailis RE; Baka JE
    Environ Sci Technol; 2010 Nov; 44(22):8684-91. PubMed ID: 20977266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying improvement potentials in cement production with life cycle assessment.
    Boesch ME; Hellweg S
    Environ Sci Technol; 2010 Dec; 44(23):9143-9. PubMed ID: 21047057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A clean environmental week: Let the nature breathe.
    Moustafa K
    Sci Total Environ; 2017 Nov; 598():639-646. PubMed ID: 28454036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The climate footprint: a practical tool to address climate change.
    Janse T; Wiers P
    Water Sci Technol; 2007; 56(4):157-63. PubMed ID: 17851216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover].
    Tian W; Liao C; Li L; Zhao D
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):516-25. PubMed ID: 21650036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A life cycle assessment of non-renewable energy use and greenhouse gas emissions associated with blueberry and raspberry production in northern Italy.
    Girgenti V; Peano C; Bounous M; Baudino C
    Sci Total Environ; 2013 Aug; 458-460():414-8. PubMed ID: 23685366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms.
    Vanotti MB; Szogi AA; Vives CA
    Waste Manag; 2008; 28(4):759-66. PubMed ID: 18060761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamental processes and implications during in situ aeration of old landfills.
    Ritzkowski M; Heyer KU; Stegmann R
    Waste Manag; 2006; 26(4):356-72. PubMed ID: 16442789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental implications of water efficient microcomponents in residential buildings.
    Fidar A; Memon FA; Butler D
    Sci Total Environ; 2010 Nov; 408(23):5828-35. PubMed ID: 20825980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Densified biomass can cost-effectively mitigate greenhouse gas emissions and address energy security in thermal applications.
    Wilson TO; McNeal FM; Spatari S; G Abler D; Adler PR
    Environ Sci Technol; 2012 Jan; 46(2):1270-7. PubMed ID: 22107056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.