BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

680 related articles for article (PubMed ID: 23869489)

  • 1. Boiling temperature as a scaling parameter for the microscopic relaxation dynamics in molecular liquids.
    Mamontov E
    J Phys Chem B; 2013 Aug; 117(32):9501-7. PubMed ID: 23869489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent neutron scattering and collective dynamics on mesoscale.
    Novikov VN; Schweizer KS; Sokolov AP
    J Chem Phys; 2013 Apr; 138(16):164508. PubMed ID: 23635158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alternative explanation of the change in T-dependence of the effective Debye-Waller factor at T(c) or T(B).
    Ngai KL; Habasaki J
    J Chem Phys; 2014 Sep; 141(11):114502. PubMed ID: 25240359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous diffusion and stretched exponentials in heterogeneous glass-forming liquids: low-temperature behavior.
    Langer JS; Mukhopadhyay S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061505. PubMed ID: 18643270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and slow crystal growth kinetics in glass-forming melts.
    Orava J; Greer AL
    J Chem Phys; 2014 Jun; 140(21):214504. PubMed ID: 24908023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts.
    Schweizer KS; Saltzman EJ
    J Chem Phys; 2004 Jul; 121(4):1984-2000. PubMed ID: 15260751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.
    Qvist J; Schober H; Halle B
    J Chem Phys; 2011 Apr; 134(14):144508. PubMed ID: 21495765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of supercooled water in confined geometry.
    Bergman R; Swenson J
    Nature; 2000 Jan; 403(6767):283-6. PubMed ID: 10659841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of a molecular glass former: Energy landscapes for diffusion in ortho-terphenyl.
    Niblett SP; de Souza VK; Stevenson JD; Wales DJ
    J Chem Phys; 2016 Jul; 145(2):024505. PubMed ID: 27421418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvation dynamics and electric field relaxation in an imidazolium-PF6 ionic liquid: from room temperature to the glass transition.
    Ito N; Richert R
    J Phys Chem B; 2007 May; 111(18):5016-22. PubMed ID: 17474705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of dynamic facilitation in molecular dynamics simulations of glass-forming liquids.
    Bergroth MN; Vogel M; Glotzer SC
    J Phys Chem B; 2005 Apr; 109(14):6748-53. PubMed ID: 16851759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity.
    Matsuoka H
    J Chem Phys; 2012 Nov; 137(20):204506. PubMed ID: 23206018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics study of cage decay, near constant loss, and crossover to cooperative ion hopping in lithium metasilicate.
    Habasaki J; Ngai KL; Hiwatari Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021205. PubMed ID: 12241162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Qualitative change in structural dynamics of some glass-forming systems.
    Novikov VN; Sokolov AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062304. PubMed ID: 26764689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-elastic neutron scattering studies of the slow dynamics of supercooled and glassy aspirin.
    Zhang Y; Tyagi M; Mamontov E; Chen SH
    J Phys Condens Matter; 2012 Feb; 24(6):064112. PubMed ID: 22277723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing Microscopic and Macroscopic Dynamics in a Paradigmatic Model of Glass-Forming Molecular Liquid.
    Porpora G; Rusciano F; Pastore R; Greco F
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotropic rotation vs. shear relaxation in supercooled liquids with globular cage molecules.
    Kaseman DC; Gulbiten O; Aitken BG; Sen S
    J Chem Phys; 2016 May; 144(17):174501. PubMed ID: 27155639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallization near glass transition: transition from diffusion-controlled to diffusionless crystal growth studied with seven polymorphs.
    Sun Y; Xi H; Chen S; Ediger MD; Yu L
    J Phys Chem B; 2008 May; 112(18):5594-601. PubMed ID: 18407712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation stretching, fast dynamics, and activation energy: a comparison of molecular and ionic liquids as revealed by depolarized light scattering.
    Schmidtke B; Petzold N; Pötzschner B; Weingärtner H; Rössler EA
    J Phys Chem B; 2014 Jun; 118(25):7108-18. PubMed ID: 24857268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic relaxations in a protein sustained down to 160K in a non-glass forming organic solvent.
    Mamontov E; O'Neill H
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3513-3519. PubMed ID: 27154287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.