These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
532 related articles for article (PubMed ID: 23869583)
1. Increase in quantity and quality of suitable areas for invasive species as climate changes. Bertelsmeier C; Luque GM; Courchamp F Conserv Biol; 2013 Dec; 27(6):1458-67. PubMed ID: 23869583 [TBL] [Abstract][Full Text] [Related]
2. Effects of climate change, invasive species, and disease on the distribution of native European crayfishes. Capinha C; Larson ER; Tricarico E; Olden JD; Gherardi F Conserv Biol; 2013 Aug; 27(4):731-40. PubMed ID: 23531056 [TBL] [Abstract][Full Text] [Related]
3. Imported fire ants near the edge of their range: disturbance and moisture determine prevalence and impact of an invasive social insect. LeBrun EG; Plowes RM; Gilbert LE J Anim Ecol; 2012 Jul; 81(4):884-95. PubMed ID: 22292743 [TBL] [Abstract][Full Text] [Related]
4. Mountain landscapes offer few opportunities for high-elevation tree species migration. Bell DM; Bradford JB; Lauenroth WK Glob Chang Biol; 2014 May; 20(5):1441-51. PubMed ID: 24353188 [TBL] [Abstract][Full Text] [Related]
5. Incorporating climate science in applications of the US endangered species act for aquatic species. McClure MM; Alexander M; Borggaard D; Boughton D; Crozier L; Griffis R; Jorgensen JC; Lindley ST; Nye J; Rowland MJ; Seney EE; Snover A; Toole C; VAN Houtan K Conserv Biol; 2013 Dec; 27(6):1222-33. PubMed ID: 24299088 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary history of the little fire ant Wasmannia auropunctata before global invasion: inferring dispersal patterns, niche requirements and past and present distribution within its native range. Chifflet L; Rodriguero MS; Calcaterra LA; Rey O; Dinghi PA; Baccaro FB; Souza JL; Follett P; Confalonieri VA J Evol Biol; 2016 Apr; 29(4):790-809. PubMed ID: 26780687 [TBL] [Abstract][Full Text] [Related]
7. Modelling distribution in European stream macroinvertebrates under future climates. Domisch S; Araújo MB; Bonada N; Pauls SU; Jähnig SC; Haase P Glob Chang Biol; 2013 Mar; 19(3):752-62. PubMed ID: 23504833 [TBL] [Abstract][Full Text] [Related]
8. Assessing the exposure of lion tamarins (Leontopithecus spp.) to future climate change. Meyer AL; Pie MR; Passos FC Am J Primatol; 2014 Jun; 76(6):551-62. PubMed ID: 24346860 [TBL] [Abstract][Full Text] [Related]
10. A framework for using niche models to estimate impacts of climate change on species distributions. Anderson RP Ann N Y Acad Sci; 2013 Sep; 1297():8-28. PubMed ID: 25098379 [TBL] [Abstract][Full Text] [Related]
11. Experimental evidence that the introduced fire ant, Solenopsis invicta, does not competitively suppress co-occurring ants in a disturbed habitat. King JR; Tschinkel WR J Anim Ecol; 2006 Nov; 75(6):1370-8. PubMed ID: 17032369 [TBL] [Abstract][Full Text] [Related]
12. Substantial declines in urban tree habitat predicted under climate change. Burley H; Beaumont LJ; Ossola A; Baumgartner JB; Gallagher R; Laffan S; Esperon-Rodriguez M; Manea A; Leishman MR Sci Total Environ; 2019 Oct; 685():451-462. PubMed ID: 31176230 [TBL] [Abstract][Full Text] [Related]
13. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Schwalm D; Epps CW; Rodhouse TJ; Monahan WB; Castillo JA; Ray C; Jeffress MR Glob Chang Biol; 2016 Apr; 22(4):1572-84. PubMed ID: 26667878 [TBL] [Abstract][Full Text] [Related]
14. Relative effects of disturbance on red imported fire ants and native ant species in a longleaf pine ecosystem. Stuble KL; Kirkman LK; Carroll CR; Sanders NJ Conserv Biol; 2011 Jun; 25(3):618-22. PubMed ID: 21561472 [TBL] [Abstract][Full Text] [Related]
15. Using Risk Assessment and Habitat Suitability Models to Prioritise Invasive Species for Management in a Changing Climate. Chai SL; Zhang J; Nixon A; Nielsen S PLoS One; 2016; 11(10):e0165292. PubMed ID: 27768758 [TBL] [Abstract][Full Text] [Related]
16. Illuminating geographical patterns in species' range shifts. Grenouillet G; Comte L Glob Chang Biol; 2014 Oct; 20(10):3080-91. PubMed ID: 24616088 [TBL] [Abstract][Full Text] [Related]
17. Effects of vegetation cover, presence of a native ant species, and human disturbance on colonization by Argentine ants. Fitzgerald K; Gordon DM Conserv Biol; 2012 Jun; 26(3):525-38. PubMed ID: 22533673 [TBL] [Abstract][Full Text] [Related]
18. Fire suppression and land-use strategies drive future dynamics of an invasive plant in a fire-prone mountain area under climate change. Lima CG; Campos JC; Regos A; Honrado JP; Fernandes PM; Freitas TR; Santos JA; Vicente JR J Environ Manage; 2024 May; 359():120997. PubMed ID: 38692031 [TBL] [Abstract][Full Text] [Related]
19. Considering climate change impact on the global potential geographical distribution of the invasive Argentine ant and little fire ant. Li T; Jiang P; Liu J; Zhu J; Zhao S; Li Z; Zhong M; Ma C; Qin Y Bull Entomol Res; 2024 Jun; 114(3):454-465. PubMed ID: 38751346 [TBL] [Abstract][Full Text] [Related]
20. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts. Tanner EP; Papeş M; Elmore RD; Fuhlendorf SD; Davis CA PLoS One; 2017; 12(9):e0184316. PubMed ID: 28886075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]