BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23869754)

  • 1. Mutational activation of the RocR activator and of a cryptic rocDEF promoter bypass loss of the initial steps of proline biosynthesis in Bacillus subtilis.
    Zaprasis A; Hoffmann T; Wünsche G; Flórez LA; Stülke J; Bremer E
    Environ Microbiol; 2014 Mar; 16(3):701-17. PubMed ID: 23869754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis.
    Gardan R; Rapoport G; Débarbouillé M
    J Mol Biol; 1995 Jun; 249(5):843-56. PubMed ID: 7540694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of the compatible solute proline by Bacillus subtilis: point mutations rendering the osmotically controlled proHJ promoter hyperactive.
    Hoffmann T; Bleisteiner M; Sappa PK; Steil L; Mäder U; Völker U; Bremer E
    Environ Microbiol; 2017 Sep; 19(9):3700-3720. PubMed ID: 28752945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the transcriptional activator RocR in the arginine-degradation pathway of Bacillus subtilis.
    Gardan R; Rapoport G; Débarbouillé M
    Mol Microbiol; 1997 May; 24(4):825-37. PubMed ID: 9194709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-Proline Synthesis Mutants of
    Stecker D; Hoffmann T; Link H; Commichau FM; Bremer E
    Front Microbiol; 2022; 13():908304. PubMed ID: 35783388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the NtrC/NifA family of transcriptional activators.
    Calogero S; Gardan R; Glaser P; Schweizer J; Rapoport G; Debarbouille M
    J Bacteriol; 1994 Mar; 176(5):1234-41. PubMed ID: 8113162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity.
    Brill J; Hoffmann T; Bleisteiner M; Bremer E
    J Bacteriol; 2011 Oct; 193(19):5335-46. PubMed ID: 21784929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ornithine is the central intermediate in the arginine degradative pathway and its regulation in Bacillus subtilis.
    Warneke R; Garbers TB; Herzberg C; Aschenbrandt G; Ficner R; Stülke J
    J Biol Chem; 2023 Jul; 299(7):104944. PubMed ID: 37343703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity of the interaction of RocR with the rocG-rocA intergenic region in Bacillus subtilis.
    Ali NO; Jeusset J; Larquet E; Le Cam E; Belitsky B; Sonenshein AL; Msadek T; Débarbouillé M
    Microbiology (Reading); 2003 Mar; 149(Pt 3):739-750. PubMed ID: 12634342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect repression by Bacillus subtilis CodY via displacement of the activator of the proline utilization operon.
    Belitsky BR
    J Mol Biol; 2011 Oct; 413(2):321-36. PubMed ID: 21840319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PrcR, a PucR-type transcriptional activator, is essential for proline utilization and mediates proline-responsive expression of the proline utilization operon putBCP in Bacillus subtilis.
    Huang SC; Lin TH; Shaw GC
    Microbiology (Reading); 2011 Dec; 157(Pt 12):3370-3377. PubMed ID: 21964733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the Corynebacterium glutamicum proline biosynthetic pathway: a natural bypass of th proA step.
    Ankri S; Serebrijski I; Reyes O; Leblon G
    J Bacteriol; 1996 Aug; 178(15):4412-9. PubMed ID: 8755867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874.
    Manabe K; Kageyama Y; Morimoto T; Ozawa T; Sawada K; Endo K; Tohata M; Ara K; Ozaki K; Ogasawara N
    Appl Environ Microbiol; 2011 Dec; 77(23):8370-81. PubMed ID: 21965396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant.
    Dormeyer M; Lübke AL; Müller P; Lentes S; Reuß DR; Thürmer A; Stülke J; Daniel R; Brantl S; Commichau FM
    Environ Microbiol Rep; 2017 Jun; 9(3):279-289. PubMed ID: 28294562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proline utilization by Bacillus subtilis: uptake and catabolism.
    Moses S; Sinner T; Zaprasis A; Stöveken N; Hoffmann T; Belitsky BR; Sonenshein AL; Bremer E
    J Bacteriol; 2012 Feb; 194(4):745-58. PubMed ID: 22139509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation.
    Fichman Y; Gerdes SY; Kovács H; Szabados L; Zilberstein A; Csonka LN
    Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1065-99. PubMed ID: 25367752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T-box-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis.
    Brill J; Hoffmann T; Putzer H; Bremer E
    Microbiology (Reading); 2011 Apr; 157(Pt 4):977-987. PubMed ID: 21233158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of proline requirement of proA and proAB deletion mutants in Salmonella typhimurium by mutation to arginine requirement.
    Kuo TT; Stocker BA
    J Bacteriol; 1969 May; 98(2):593-8. PubMed ID: 4891261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism.
    Heidrich N; Chinali A; Gerth U; Brantl S
    Mol Microbiol; 2006 Oct; 62(2):520-36. PubMed ID: 17020585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two arginine repressors regulate arginine biosynthesis in Lactobacillus plantarum.
    Nicoloff H; Arsène-Ploetze F; Malandain C; Kleerebezem M; Bringel F
    J Bacteriol; 2004 Sep; 186(18):6059-69. PubMed ID: 15342575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.