BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 23869852)

  • 1. Electronic properties of a graphene device with peptide adsorption: insight from simulation.
    Akdim B; Pachter R; Kim SS; Naik RR; Walsh TR; Trohalaki S; Hong G; Kuang Z; Farmer BL
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7470-7. PubMed ID: 23869852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
    Ou L; Luo Y; Wei G
    J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular-level understanding of the adsorption mechanism of a graphite-binding peptide at the water/graphite interface.
    Penna MJ; Mijajlovic M; Tamerler C; Biggs MJ
    Soft Matter; 2015 Jul; 11(26):5192-203. PubMed ID: 25920450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydration patterns of graphene-based nanomaterials (GBNMs) play a major role in the stability of a helical protein: a molecular dynamics simulation study.
    Baweja L; Balamurugan K; Subramanian V; Dhawan A
    Langmuir; 2013 Nov; 29(46):14230-8. PubMed ID: 24144078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computation of the binding free energy of peptides to graphene in explicit water.
    Welch CM; Camden AN; Barr SA; Leuty GM; Kedziora GS; Berry RJ
    J Chem Phys; 2015 Jul; 143(4):045104. PubMed ID: 26233167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of peptide-graphene interactions in explicit water.
    Camden AN; Barr SA; Berry RJ
    J Phys Chem B; 2013 Sep; 117(37):10691-7. PubMed ID: 23964693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Favorable adsorption of capped amino acids on graphene substrate driven by desolvation effect.
    Dragneva N; Floriano WB; Stauffer D; Mawhinney RC; Fanchini G; Rubel O
    J Chem Phys; 2013 Nov; 139(17):174711. PubMed ID: 24206326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nature of molecular interactions of peptides with gold, palladium, and Pd-Au bimetal surfaces in aqueous solution.
    Heinz H; Farmer BL; Pandey RB; Slocik JM; Patnaik SS; Pachter R; Naik RR
    J Am Chem Soc; 2009 Jul; 131(28):9704-14. PubMed ID: 19552440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the relationship between peptide adsorption resistance and surface contact angle: a combined experimental and simulation single-molecule study.
    Schwierz N; Horinek D; Liese S; Pirzer T; Balzer BN; Hugel T; Netz RR
    J Am Chem Soc; 2012 Dec; 134(48):19628-38. PubMed ID: 23101566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An atomic charge model for graphene oxide for exploring its bioadhesive properties in explicit water.
    Stauffer D; Dragneva N; Floriano WB; Mawhinney RC; Fanchini G; French S; Rubel O
    J Chem Phys; 2014 Jul; 141(4):044705. PubMed ID: 25084935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Oligoglycine surface structures: molecular dynamics simulation].
    Gus'kova OA; Khalatur PG; Khokhlov AR; Chinarev AA; Tsygankova SV; Bovin NV
    Bioorg Khim; 2010; 36(5):622-9. PubMed ID: 21063448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Interactions between Graphene and Biological Molecules.
    Zou X; Wei S; Jasensky J; Xiao M; Wang Q; Brooks Iii CL; Chen Z
    J Am Chem Soc; 2017 Feb; 139(5):1928-1936. PubMed ID: 28092440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discontinuous Molecular Dynamics Simulations of Biomolecule Interfacial Behavior: Study of Ovispirin-1 Adsorption on a Graphene Surface.
    Zheng S; Sajib MSJ; Wei Y; Wei T
    J Chem Theory Comput; 2021 Mar; 17(3):1874-1882. PubMed ID: 33586958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism of selective binding of peptides to silicon surface.
    Ramakrishnan SK; Martin M; Cloitre T; Firlej L; Gergely C
    J Chem Inf Model; 2014 Jul; 54(7):2117-26. PubMed ID: 24936969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface doping and band gap tunability in hydrogenated graphene.
    Matis BR; Burgess JS; Bulat FA; Friedman AL; Houston BH; Baldwin JW
    ACS Nano; 2012 Jan; 6(1):17-22. PubMed ID: 22187951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of peptide-surface interactions.
    Raut VP; Agashe MA; Stuart SJ; Latour RA
    Langmuir; 2005 Feb; 21(4):1629-39. PubMed ID: 15697318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bioelectronic platform using a graphene-lipid bilayer interface.
    Ang PK; Jaiswal M; Lim CH; Wang Y; Sankaran J; Li A; Lim CT; Wohland T; Barbaros O; Loh KP
    ACS Nano; 2010 Dec; 4(12):7387-94. PubMed ID: 21067155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.