BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 23869961)

  • 1. Practical considerations for the interpretation of microbial testing results based on small numbers of samples.
    Hoelzer K; Pouillot R
    Foodborne Pathog Dis; 2013 Nov; 10(11):907-15. PubMed ID: 23869961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model approach to estimate the probability of accepting a lot of heterogeneously contaminated powdered food using different sampling strategies.
    Valero A; Pasquali F; De Cesare A; Manfreda G
    Int J Food Microbiol; 2014 Aug; 184():35-8. PubMed ID: 24462218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the microbiological criteria for lot rejection from the performance objective or food safety objective.
    Whiting RC; Rainosek A; Buchanan RL; Miliotis M; Labarre D; Long W; Ruple A; Schaub S
    Int J Food Microbiol; 2006 Aug; 110(3):263-7. PubMed ID: 16784791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of industry-generated data. Part 2: Risk-based sampling plan for efficient self-control of aflatoxin M₁ contamination in raw milk.
    Farkas Z; Trevisani M; Horváth Z; Serraino A; Szabó IJ; Kerekes K; Szeitzné-Szabó M; Ambrus A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(7):1257-73. PubMed ID: 24844131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysing microbiological data: Tobit or not Tobit?
    Lorimer MF; Kiermeier A
    Int J Food Microbiol; 2007 May; 116(3):313-8. PubMed ID: 17382420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the number of sample units tested on the precision of microbial colony counts.
    Jarvis B; Hedges AJ
    Food Microbiol; 2011 Sep; 28(6):1211-9. PubMed ID: 21645822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica.
    Murphy NM; McLauchlin J; Ohai C; Grant KA
    Int J Food Microbiol; 2007 Nov; 120(1-2):110-9. PubMed ID: 17604864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating the sensitivity of pooled-sample herd tests for fecal Salmonella in cattle.
    Jordan D
    Prev Vet Med; 2005 Aug; 70(1-2):59-73. PubMed ID: 15967243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens.
    Suo B; He Y; Paoli G; Gehring A; Tu SI; Shi X
    Mol Cell Probes; 2010 Apr; 24(2):77-86. PubMed ID: 19833198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sampling and sample preparation methods for determining concentrations of mycotoxins in foods and feeds.
    IARC Sci Publ; 2012; (158):39-51. PubMed ID: 23477195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food pathogen and toxin detection.
    Baeumner A
    Anal Bioanal Chem; 2008 May; 391(2):449-50. PubMed ID: 18369600
    [No Abstract]   [Full Text] [Related]  

  • 12. Fitting a distribution to microbial counts: making sense of zeroes.
    Duarte AS; Stockmarr A; Nauta MJ
    Int J Food Microbiol; 2015 Mar; 196():40-50. PubMed ID: 25522056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sampling the processing environment for Listeria.
    Nicolau AI; Bolocan AS
    Methods Mol Biol; 2014; 1157():3-14. PubMed ID: 24792544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of different methods for the detection and identification of Enterobacter sakazakii isolated from South African infant formula milks and the processing environment.
    Cawthorn DM; Botha S; Witthuhn RC
    Int J Food Microbiol; 2008 Sep; 127(1-2):129-38. PubMed ID: 18687498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filter-based pathogen enrichment technology for detection of multiple viable foodborne pathogens in 1 day.
    Murakami T
    J Food Prot; 2012 Sep; 75(9):1603-10. PubMed ID: 22947467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Rapid detection of Shigella dysenteriae by PCR assay].
    Chen H; Zhong Q; Wang L; Sun Y
    Wei Sheng Yan Jiu; 2010 Sep; 39(5):597-600. PubMed ID: 21033439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing practices contributing to Campylobacter contamination in Belgian chicken meat preparations.
    Sampers I; Habib I; Berkvens D; Dumoulin A; Zutter LD; Uyttendaele M
    Int J Food Microbiol; 2008 Dec; 128(2):297-303. PubMed ID: 18947895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial ecology of food contact surfaces and products of small-scale facilities producing traditional sausages.
    Gounadaki AS; Skandamis PN; Drosinos EH; Nychas GJ
    Food Microbiol; 2008 Apr; 25(2):313-23. PubMed ID: 18206774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent sensing technologies for pathogen detection in milk: a review.
    Mortari A; Lorenzelli L
    Biosens Bioelectron; 2014 Oct; 60():8-21. PubMed ID: 24768759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of three culture media commonly used for detecting Listeria monocytogenes.
    Andritsos ND; Mataragas M; Karaberi V; Paramithiotis S; Drosinos EH
    J Food Prot; 2012 Aug; 75(8):1518-23. PubMed ID: 22856580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.