These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23870001)

  • 1. The redox-associated adaptive response of brain to physical exercise.
    Radak Z; Ihasz F; Koltai E; Goto S; Taylor AW; Boldogh I
    Free Radic Res; 2014 Jan; 48(1):84-92. PubMed ID: 23870001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical exercise, reactive oxygen species and neuroprotection.
    Radak Z; Suzuki K; Higuchi M; Balogh L; Boldogh I; Koltai E
    Free Radic Biol Med; 2016 Sep; 98():187-196. PubMed ID: 26828019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of exercise on brain function: role of free radicals.
    Radak Z; Kumagai S; Taylor AW; Naito H; Goto S
    Appl Physiol Nutr Metab; 2007 Oct; 32(5):942-6. PubMed ID: 18059620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling.
    Radak Z; Zhao Z; Koltai E; Ohno H; Atalay M
    Antioxid Redox Signal; 2013 Apr; 18(10):1208-46. PubMed ID: 22978553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant and anti-inflammatory effects of exercise: role of redox signaling.
    Ji LL; Zhang Y
    Free Radic Res; 2014 Jan; 48(1):3-11. PubMed ID: 24083482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic adaptation to oxidative challenge induced by regular exercise.
    Radak Z; Chung HY; Goto S
    Free Radic Biol Med; 2008 Jan; 44(2):153-9. PubMed ID: 18191751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The roles of microRNA in redox metabolism and exercise-mediated adaptation.
    Torma F; Gombos Z; Jokai M; Berkes I; Takeda M; Mimura T; Radak Z; Gyori F
    J Sport Health Sci; 2020 Sep; 9(5):405-414. PubMed ID: 32780693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of exercise-induced reactive oxygen species in the modulation of heat shock protein response.
    Fittipaldi S; Dimauro I; Mercatelli N; Caporossi D
    Free Radic Res; 2014 Jan; 48(1):52-70. PubMed ID: 23957557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise, redox system and neurodegenerative diseases.
    Quan H; Koltai E; Suzuki K; Aguiar AS; Pinho R; Boldogh I; Berkes I; Radak Z
    Biochim Biophys Acta Mol Basis Dis; 2020 Oct; 1866(10):165778. PubMed ID: 32222542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long term running biphasically improves methylglyoxal-related metabolism, redox homeostasis and neurotrophic support within adult mouse brain cortex.
    Falone S; D'Alessandro A; Mirabilio A; Petruccelli G; Cacchio M; Di Ilio C; Di Loreto S; Amicarelli F
    PLoS One; 2012; 7(2):e31401. PubMed ID: 22347470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise-induced adaptations of cardiac redox homeostasis and remodeling in heterozygous SOD2-knockout mice.
    Richters L; Lange N; Renner R; Treiber N; Ghanem A; Tiemann K; Scharffetter-Kochanek K; Bloch W; Brixius K
    J Appl Physiol (1985); 2011 Nov; 111(5):1431-40. PubMed ID: 21836049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria in exercise-induced oxidative stress.
    Di Meo S; Venditti P
    Biol Signals Recept; 2001; 10(1-2):125-40. PubMed ID: 11223645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response and adaptation of skeletal muscle to exercise--the role of reactive oxygen species.
    Niess AM; Simon P
    Front Biosci; 2007 Sep; 12():4826-38. PubMed ID: 17569613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cell cycle is a redox cycle: linking phase-specific targets to cell fate.
    Burhans WC; Heintz NH
    Free Radic Biol Med; 2009 Nov; 47(9):1282-93. PubMed ID: 19486941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-kappaB activation.
    Bar-Shai M; Carmeli E; Ljubuncic P; Reznick AZ
    Free Radic Biol Med; 2008 Jan; 44(2):202-14. PubMed ID: 18191756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats.
    de Castro MRT; Ferreira APO; Busanello GL; da Silva LRH; da Silveira Junior MEP; Fiorin FDS; Arrifano G; Crespo-López ME; Barcelos RP; Cuevas MJ; Bresciani G; González-Gallego J; Fighera MR; Royes LFF
    J Physiol; 2017 Sep; 595(17):6023-6044. PubMed ID: 28726269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of a neuroprotective exercise protocol on oxidative state and BDNF levels in the rat hippocampus.
    Cechetti F; Fochesatto C; Scopel D; Nardin P; Gonçalves CA; Netto CA; Siqueira IR
    Brain Res; 2008 Jan; 1188():182-8. PubMed ID: 18021756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training.
    Gounder SS; Kannan S; Devadoss D; Miller CJ; Whitehead KJ; Odelberg SJ; Firpo MA; Paine R; Hoidal JR; Abel ED; Rajasekaran NS
    PLoS One; 2012; 7(9):e45697. PubMed ID: 23029187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise-induced hormesis and skeletal muscle health.
    Ji LL; Kang C; Zhang Y
    Free Radic Biol Med; 2016 Sep; 98():113-122. PubMed ID: 26916558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.