These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2387009)

  • 1. Dose-response relationship and low dose extrapolation in chemical carcinogenesis.
    Lutz WK
    Carcinogenesis; 1990 Aug; 11(8):1243-7. PubMed ID: 2387009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose-response relationships in chemical carcinogenesis: from DNA adducts to tumor incidence.
    Lutz WK
    Adv Exp Med Biol; 1991; 283():151-6. PubMed ID: 2068982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose-response relationships in chemical carcinogenesis: superposition of different mechanisms of action, resulting in linear-nonlinear curves, practical thresholds, J-shapes.
    Lutz WK
    Mutat Res; 1998 Sep; 405(2):117-24. PubMed ID: 9748532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose-response relationships in chemical carcinogenesis reflect differences in individual susceptibility. Consequences for cancer risk assessment, extrapolation, and prevention.
    Lutz WK
    Hum Exp Toxicol; 1999 Dec; 18(12):707-12. PubMed ID: 10627656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental and chemical carcinogenesis.
    Wogan GN; Hecht SS; Felton JS; Conney AH; Loeb LA
    Semin Cancer Biol; 2004 Dec; 14(6):473-86. PubMed ID: 15489140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-hit kinetics of tumor formation, with special reference to experimental liver and human lung carcinogenesis and some gneral conclusions.
    Emmelot P; Scherer E
    Cancer Res; 1977 Jun; 37(6):1702-8. PubMed ID: 870184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose-response relationship for chemical carcinogenesis by genotoxic agents.
    Lutz WK
    Soz Praventivmed; 1991; 36(4-5):243-8. PubMed ID: 1750274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significance of DNA adducts at low dose: shortening the time to spontaneous tumor occurrence.
    Lutz WK; Gaylor D
    Regul Toxicol Pharmacol; 1996 Feb; 23(1 Pt 1):29-34. PubMed ID: 8628917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous genotoxic agents and processes as a basis of spontaneous carcinogenesis.
    Lutz WK
    Mutat Res; 1990 May; 238(3):287-95. PubMed ID: 2188125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implication of nonlinear kinetics on risk estimation in carcinogenesis.
    Hoel DG; Kaplan NL; Anderson MW
    Science; 1983 Mar; 219(4588):1032-7. PubMed ID: 6823565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaches for characterizing threshold dose-response relationships for DNA-damage pathways involved in carcinogenicity in vivo and micronuclei formation in vitro.
    Clewell RA; Andersen ME
    Mutagenesis; 2016 May; 31(3):333-40. PubMed ID: 26846943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer risk assessment for 1,3-butadiene: data integration opportunities.
    Preston RJ
    Chem Biol Interact; 2007 Mar; 166(1-3):150-5. PubMed ID: 16647696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A true threshold dose in chemical carcinogenesis cannot be defined for a population, irrespective of the mode of action.
    Lutz WK
    Hum Exp Toxicol; 2000 Oct; 19(10):566-8; discussion 571-2. PubMed ID: 11211995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative inter-relationships between aflatoxin B1 carcinogen dose, indole-3-carbinol anti-carcinogen dose, target organ DNA adduction and final tumor response.
    Dashwood RH; Arbogast DN; Fong AT; Pereira C; Hendricks JD; Bailey GS
    Carcinogenesis; 1989 Jan; 10(1):175-81. PubMed ID: 2491968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic, mode of action at biologically plausible low doses: what are the implications for low dose cancer risk?
    Snow ET; Sykora P; Durham TR; Klein CB
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):557-64. PubMed ID: 15996700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?
    Gaylor DW
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):128-33. PubMed ID: 15698536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome P-450 and acetyltransferase expression as biomarkers of carcinogen-DNA adduct levels and human cancer susceptibility.
    Badawi AF; Stern SJ; Lang NP; Kadlubar FF
    Prog Clin Biol Res; 1996; 395():109-40. PubMed ID: 8895986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical considerations for thresholds in chemical carcinogenesis.
    Thomas AD; Fahrer J; Johnson GE; Kaina B
    Mutat Res Rev Mutat Res; 2015; 765():56-67. PubMed ID: 26281768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of the toxicology of acrylamide.
    Exon JH
    J Toxicol Environ Health B Crit Rev; 2006; 9(5):397-412. PubMed ID: 17492525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of carcinogen dose in chemoprevention studies: quantitative interrelationships between, dibenzo[a,l]pyrene dose, chlorophyllin dose, target organ DNA adduct biomarkers and final tumor outcome.
    Pratt MM; Reddy AP; Hendricks JD; Pereira C; Kensler TW; Bailey GS
    Carcinogenesis; 2007 Mar; 28(3):611-24. PubMed ID: 16973675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.