These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 23870328)

  • 21. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton.
    Kao PC; Lewis CL; Ferris DP
    J Biomech; 2010 Jan; 43(2):203-9. PubMed ID: 19878952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patterns of muscle coordination vary with stride frequency during weight assisted treadmill walking.
    Klarner T; Chan HK; Wakeling JM; Lam T
    Gait Posture; 2010 Mar; 31(3):360-5. PubMed ID: 20097076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination.
    Zhu F; Kern M; Fowkes E; Afzal T; Contreras-Vidal JL; Francisco GE; Chang SH
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 33752175
    [No Abstract]   [Full Text] [Related]  

  • 26. Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes.
    Field-Fote EC; Lindley SD; Sherman AL
    J Neurol Phys Ther; 2005 Sep; 29(3):127-37. PubMed ID: 16398945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased gait variability during robot-assisted walking is accompanied by increased sensorimotor brain activity in healthy people.
    Berger A; Horst F; Steinberg F; Thomas F; Müller-Eising C; Schöllhorn WI; Doppelmayr M
    J Neuroeng Rehabil; 2019 Dec; 16(1):161. PubMed ID: 31882008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of robotic performance-based error-augmentation versus error-reduction training on the gait of healthy individuals.
    Kao PC; Srivastava S; Agrawal SK; Scholz JP
    Gait Posture; 2013 Jan; 37(1):113-20. PubMed ID: 22832470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton.
    Koopman B; van Asseldonk EH; van der Kooij H
    J Neuroeng Rehabil; 2013 Jan; 10():3. PubMed ID: 23336754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forced Use of the Paretic Leg Induced by a Constraint Force Applied to the Nonparetic Leg in Individuals Poststroke During Walking.
    Hsu CJ; Kim J; Roth EJ; Rymer WZ; Wu M
    Neurorehabil Neural Repair; 2017 Dec; 31(12):1042-1052. PubMed ID: 29145773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differences in muscle activity and temporal step parameters between Lokomat guided walking and treadmill walking in post-stroke hemiparetic patients and healthy walkers.
    van Kammen K; Boonstra AM; van der Woude LHV; Reinders-Messelink HA; den Otter R
    J Neuroeng Rehabil; 2017 Apr; 14(1):32. PubMed ID: 28427422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recovery and compensation after robotic assisted gait training in chronic stroke survivors.
    De Luca A; Vernetti H; Capra C; Pisu I; Cassiano C; Barone L; Gaito F; Danese F; Antonio Checchia G; Lentino C; Giannoni P; Casadio M
    Disabil Rehabil Assist Technol; 2019 Nov; 14(8):826-838. PubMed ID: 29741134
    [No Abstract]   [Full Text] [Related]  

  • 33. Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: a subgroup analysis from a randomized clinical trial.
    Lewek MD; Cruz TH; Moore JL; Roth HR; Dhaher YY; Hornby TG
    Phys Ther; 2009 Aug; 89(8):829-39. PubMed ID: 19520734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationship between gait quality measures and modular neuromuscular control parameters in chronic post-stroke individuals.
    Shin SY; Kim Y; Jayaraman A; Park HS
    J Neuroeng Rehabil; 2021 Apr; 18(1):58. PubMed ID: 33827607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Locomotor training through a novel robotic platform for gait rehabilitation in pediatric population: short report.
    Bayón C; Lerma S; Ramírez O; Serrano JI; Del Castillo MD; Raya R; Belda-Lois JM; Martínez I; Rocon E
    J Neuroeng Rehabil; 2016 Nov; 13(1):98. PubMed ID: 27842562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.
    Regnaux JP; Saremi K; Marehbian J; Bussel B; Dobkin BH
    Neurorehabil Neural Repair; 2008; 22(4):348-54. PubMed ID: 18073325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach.
    Nooijen CF; Ter Hoeve N; Field-Fote EC
    J Neuroeng Rehabil; 2009 Oct; 6():36. PubMed ID: 19799783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training.
    Hussein S; Schmidt H; Volkmar M; Werner C; Helmich I; Piorko F; Krüger J; Hesse S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1961-4. PubMed ID: 19163075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EMG patterns during assisted walking in the exoskeleton.
    Sylos-Labini F; La Scaleia V; d'Avella A; Pisotta I; Tamburella F; Scivoletto G; Molinari M; Wang S; Wang L; van Asseldonk E; van der Kooij H; Hoellinger T; Cheron G; Thorsteinsson F; Ilzkovitz M; Gancet J; Hauffe R; Zanov F; Lacquaniti F; Ivanenko YP
    Front Hum Neurosci; 2014; 8():423. PubMed ID: 24982628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.