These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A preliminary study of sex differences in brain activation during a spatial navigation task in healthy adults. Sneider JT; Sava S; Rogowska J; Yurgelun-Todd DA Percept Mot Skills; 2011 Oct; 113(2):461-80. PubMed ID: 22185061 [TBL] [Abstract][Full Text] [Related]
4. Cognitive and neural effects of semantic encoding strategy training in older adults. Kirchhoff BA; Anderson BA; Barch DM; Jacoby LL Cereb Cortex; 2012 Apr; 22(4):788-99. PubMed ID: 21709173 [TBL] [Abstract][Full Text] [Related]
5. Greater BOLD response to working memory in endurance-trained adults revealed by breath-hold calibration. Gonzales MM; Tarumi T; Mumford JA; Ellis RC; Hungate JR; Pyron M; Tanaka H; Haley AP Hum Brain Mapp; 2014 Jul; 35(7):2898-910. PubMed ID: 24038949 [TBL] [Abstract][Full Text] [Related]
6. Impairments in precision, rather than spatial strategy, characterize performance on the virtual Morris Water Maze: A case study. Kolarik BS; Shahlaie K; Hassan A; Borders AA; Kaufman KC; Gurkoff G; Yonelinas AP; Ekstrom AD Neuropsychologia; 2016 Jan; 80():90-101. PubMed ID: 26593960 [TBL] [Abstract][Full Text] [Related]
7. The human parahippocampal cortex subserves egocentric spatial learning during navigation in a virtual maze. Weniger G; Siemerkus J; Schmidt-Samoa C; Mehlitz M; Baudewig J; Dechent P; Irle E Neurobiol Learn Mem; 2010 Jan; 93(1):46-55. PubMed ID: 19683063 [TBL] [Abstract][Full Text] [Related]
8. Aerobic fitness relates to learning on a virtual Morris Water Task and hippocampal volume in adolescents. Herting MM; Nagel BJ Behav Brain Res; 2012 Aug; 233(2):517-25. PubMed ID: 22610054 [TBL] [Abstract][Full Text] [Related]
9. Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task. Konishi K; Etchamendy N; Roy S; Marighetto A; Rajah N; Bohbot VD Hippocampus; 2013 Nov; 23(11):1005-14. PubMed ID: 23929534 [TBL] [Abstract][Full Text] [Related]
10. A virtual reality-based FMRI study of reward-based spatial learning. Marsh R; Hao X; Xu D; Wang Z; Duan Y; Liu J; Kangarlu A; Martinez D; Garcia F; Tau GZ; Yu S; Packard MG; Peterson BS Neuropsychologia; 2010 Aug; 48(10):2912-21. PubMed ID: 20570684 [TBL] [Abstract][Full Text] [Related]
11. Segregation of neural circuits involved in spatial learning in reaching and navigational space. Nemmi F; Boccia M; Piccardi L; Galati G; Guariglia C Neuropsychologia; 2013 Jul; 51(8):1561-70. PubMed ID: 23615031 [TBL] [Abstract][Full Text] [Related]
12. Modeling the interaction of navigational systems in a reward-based virtual navigation task. Raiesdana S J Integr Neurosci; 2018; 17(1):27-42. PubMed ID: 29376881 [TBL] [Abstract][Full Text] [Related]