These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 23870945)
1. Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds. Durak A; Baraniak B; Jakubczyk A; Świeca M Food Chem; 2013 Dec; 141(3):2177-83. PubMed ID: 23870945 [TBL] [Abstract][Full Text] [Related]
2. Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Carrasco-Castilla J; Hernández-Álvarez AJ; Jiménez-Martínez C; Jacinto-Hernández C; Alaiz M; Girón-Calle J; Vioque J; Dávila-Ortiz G Food Chem; 2012 Dec; 135(3):1789-95. PubMed ID: 22953924 [TBL] [Abstract][Full Text] [Related]
3. Winged bean [Psophorcarpus tetragonolobus (L.) DC] seeds as an underutilised plant source of bifunctional proteolysate and biopeptides. Yea CS; Ebrahimpour A; Hamid AA; Bakar J; Muhammad K; Saari N Food Funct; 2014 May; 5(5):1007-16. PubMed ID: 24658538 [TBL] [Abstract][Full Text] [Related]
4. Extraction of antioxidative and antihypertensive bioactive peptides from Parkia speciosa seeds. Siow HL; Gan CY Food Chem; 2013 Dec; 141(4):3435-42. PubMed ID: 23993504 [TBL] [Abstract][Full Text] [Related]
5. Investigation on antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activity of Bambara bean protein hydrolysates. Mune Mune MA; Minka SR; Henle T Food Chem; 2018 Jun; 250():162-169. PubMed ID: 29412907 [TBL] [Abstract][Full Text] [Related]
6. Angiotensin-I converting enzyme inhibitory and antioxidant activities of peptide fractions extracted by ultrafiltration of cowpea Vigna unguiculata hydrolysates. Segura Campos MR; Chel Guerrero LA; Betancur Ancona DA J Sci Food Agric; 2010 Nov; 90(14):2512-8. PubMed ID: 20690111 [TBL] [Abstract][Full Text] [Related]
7. The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins. Jakubczyk A; Karaś M; Baraniak B; Pietrzak M Food Chem; 2013 Dec; 141(4):3774-80. PubMed ID: 23993548 [TBL] [Abstract][Full Text] [Related]
8. High-Pressure-Assisted Enzymatic Release of Peptides and Phenolics Increases Angiotensin Converting Enzyme I Inhibitory and Antioxidant Activities of Pinto Bean Hydrolysates. Garcia-Mora P; Peñas E; Frias J; Zieliński H; Wiczkowski W; Zielińska D; Martínez-Villaluenga C J Agric Food Chem; 2016 Mar; 64(8):1730-40. PubMed ID: 26857428 [TBL] [Abstract][Full Text] [Related]
9. Novel angiotensin I-converting enzyme inhibitory peptides isolated from Alcalase hydrolysate of mung bean protein. Li GH; Wan JZ; Le GW; Shi YH J Pept Sci; 2006 Aug; 12(8):509-14. PubMed ID: 16680798 [TBL] [Abstract][Full Text] [Related]
10. Optimization of the Enzymatic Hydrolysis of Lupin (Lupinus) Proteins for Producing ACE-Inhibitory Peptides. Boschin G; Scigliuolo GM; Resta D; Arnoldi A J Agric Food Chem; 2014 Feb; 62(8):1846-51. PubMed ID: 24483134 [TBL] [Abstract][Full Text] [Related]
11. Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. Cheung IW; Nakayama S; Hsu MN; Samaranayaka AG; Li-Chan EC J Agric Food Chem; 2009 Oct; 57(19):9234-42. PubMed ID: 19731915 [TBL] [Abstract][Full Text] [Related]
12. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions. Arise AK; Alashi AM; Nwachukwu ID; Ijabadeniyi OA; Aluko RE; Amonsou EO Food Funct; 2016 May; 7(5):2431-7. PubMed ID: 27156453 [TBL] [Abstract][Full Text] [Related]
13. [STUDIES IN VITRO INHIBITION OF THE ANGIOTENSIN-CONVERTING ENZYME-I, HYPOTENSIVE AND ANTIHYPERTENSIVE EFFECTS OF PEPTIDE FRACTIONS OF V. UNGUICULATA]. Cú-Cañetas T; Betancur Ancona D; Gallegos Tintoré S; Sandoval Peraza M; Chel Guerrero L Nutr Hosp; 2015 Nov; 32(5):2117-25. PubMed ID: 26545668 [TBL] [Abstract][Full Text] [Related]
14. Angiotensin-converting enzyme-inhibitory activity in protein hydrolysates from normal and anthracnose disease-damaged Phaseolus vulgaris seeds. Hernández-Álvarez AJ; Carrasco-Castilla J; Dávila-Ortiz G; Alaiz M; Girón-Calle J; Vioque-Peña J; Jacinto-Hernández C; Jiménez-Martínez C J Sci Food Agric; 2013 Mar; 93(4):961-6. PubMed ID: 22903807 [TBL] [Abstract][Full Text] [Related]
16. Antioxidative and angiotensin-I-converting enzyme inhibitory potential of a Pacific Hake ( Merluccius productus ) fish protein hydrolysate subjected to simulated gastrointestinal digestion and Caco-2 cell permeation. Samaranayaka AG; Kitts DD; Li-Chan EC J Agric Food Chem; 2010 Feb; 58(3):1535-42. PubMed ID: 20085275 [TBL] [Abstract][Full Text] [Related]
17. Angiotensin I converting enzyme-inhibitory peptides from commercial wet- and dry-milled corn germ. Parris N; Moreau RA; Johnston DB; Dickey LC; Aluko RE J Agric Food Chem; 2008 Apr; 56(8):2620-3. PubMed ID: 18355022 [TBL] [Abstract][Full Text] [Related]
18. Purification and identification of angiotensin I-converting enzyme-inhibitory peptides from apalbumin 2 during simulated gastrointestinal digestion. Xu X; Gao Y J Sci Food Agric; 2015 Mar; 95(5):906-14. PubMed ID: 24853103 [TBL] [Abstract][Full Text] [Related]
19. ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme. Rao S; Sun J; Liu Y; Zeng H; Su Y; Yang Y Food Chem; 2012 Dec; 135(3):1245-52. PubMed ID: 22953850 [TBL] [Abstract][Full Text] [Related]
20. Analysis of novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of cuttlefish (Sepia officinalis) muscle proteins. Balti R; Nedjar-Arroume N; Adjé EY; Guillochon D; Nasri M J Agric Food Chem; 2010 Mar; 58(6):3840-6. PubMed ID: 20180574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]