BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23871047)

  • 1. What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach.
    Zhou P; Yang C; Ren Y; Wang C; Tian F
    Food Chem; 2013 Dec; 141(3):2967-73. PubMed ID: 23871047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico identification of milk antihypertensive di- and tripeptides involved in angiotensin I-converting enzyme inhibitory activity.
    Vukic VR; Vukic DV; Milanovic SD; Ilicic MD; Kanuric KG; Johnson MS
    Nutr Res; 2017 Oct; 46():22-30. PubMed ID: 29173648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-activity relationship study of bitter di- and tri-peptides including relationship with angiotensin I-converting enzyme inhibitory activity.
    Wu J; Aluko RE
    J Pept Sci; 2007 Jan; 13(1):63-9. PubMed ID: 17117396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating Computational Modeling and Experimental Assay to Discover New Potent ACE-Inhibitory Peptides.
    Ren Y; Wang Q; Chen S; Cao H
    Mol Inform; 2014 Jan; 33(1):43-52. PubMed ID: 27485198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the activity of ACE inhibitory peptides with a novel mode of pseudo amino acid composition.
    Shu M; Cheng X; Zhang Y; Wang Y; Lin Y; Wang L; Lin Z
    Protein Pept Lett; 2011 Dec; 18(12):1233-43. PubMed ID: 21728992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review on the angiotensin-I-converting enzyme (ACE) inhibitor peptides from marine proteins.
    He HL; Liu D; Ma CB
    Appl Biochem Biotechnol; 2013 Feb; 169(3):738-49. PubMed ID: 23271625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of the relationship between dipeptide structure and dipeptide stability, permeability, and ACE inhibitory activity.
    Foltz M; van Buren L; Klaffke W; Duchateau GS
    J Food Sci; 2009 Sep; 74(7):H243-51. PubMed ID: 19895477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based design and optimization of antihypertensive peptides to obtain high inhibitory potency against both renin and angiotensin I-converting enzyme.
    Zhou Z; Cheng C; Li Y
    SAR QSAR Environ Res; 2015 Dec; 26(12):1001-1016. PubMed ID: 26524626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SVEEVA descriptor application to peptide QSAR.
    Tong J; Che T; Liu S; Li Y; Wang P; Xu X; Chen Y
    Arch Pharm (Weinheim); 2011 Nov; 344(11):719-25. PubMed ID: 21956614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antihypertensive effects of lactoferrin hydrolyzates: Inhibition of angiotensin- and endothelin-converting enzymes.
    Fernández-Musoles R; Salom JB; Martínez-Maqueda D; López-Díez JJ; Recio I; Manzanares P
    Food Chem; 2013 Aug; 139(1-4):994-1000. PubMed ID: 23561201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant food-derived Angiotensin I converting enzyme inhibitory peptides.
    Guang C; Phillips RD
    J Agric Food Chem; 2009 Jun; 57(12):5113-20. PubMed ID: 19449887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin-I converting enzyme (ACE) inhibitory mechanism of tripeptides containing aromatic residues.
    Kobayashi Y; Yamauchi T; Katsuda T; Yamaji H; Katoh S
    J Biosci Bioeng; 2008 Sep; 106(3):310-2. PubMed ID: 18930012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antihypertensive peptides derived from milk proteins.
    Yamamoto N; Takano T
    Nahrung; 1999 Jun; 43(3):159-64. PubMed ID: 10399348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine annealing-guided navigation of antihypertensive food peptide selectivity between human ACE N- and C-domains in structurally interacting diversity space.
    Mei L; Shang S; Wang S; Ye H; Zhou P
    J Mol Recognit; 2023 Jun; 36(6):e3014. PubMed ID: 37014036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of angiotensin-I-converting enzyme inhibitory peptides by integrating in silico modeling and an in vitro assay.
    Jing T; Feng J; Li D; Liu J; He G
    ChemMedChem; 2013 Jul; 8(7):1057-66. PubMed ID: 23740817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism of the interactions between inhibitory tripeptides and angiotensin-converting enzyme.
    Zhou M; Du K; Ji P; Feng W
    Biophys Chem; 2012 Jul; 168-169():60-6. PubMed ID: 22835627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptides as targets for antihypertensive drug development.
    Hedner T; Sun X; Junggren IL; Pettersson A; Edvinsson L
    J Hypertens Suppl; 1992 Dec; 10(7):S121-32. PubMed ID: 1291647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why OppA protein can bind sequence-independent peptides? A combination of QM/MM, PB/SA, and structure-based QSAR analyses.
    Tian F; Yang L; Lv F; Luo X; Pan Y
    Amino Acids; 2011 Feb; 40(2):493-503. PubMed ID: 20582607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using multidimensional patterns of amino acid attributes for QSAR analysis of peptides.
    Liang G; Yang L; Kang L; Mei H; Li Z
    Amino Acids; 2009 Oct; 37(4):583-91. PubMed ID: 18821054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antihypertensive properties of lactoferricin B-derived peptides.
    Ruiz-Giménez P; Ibáñez A; Salom JB; Marcos JF; López-Díez JJ; Vallés S; Torregrosa G; Alborch E; Manzanares P
    J Agric Food Chem; 2010 Jun; 58(11):6721-7. PubMed ID: 20446662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.