These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23871254)

  • 41. Enhancement of phosphorus removal in a low temperature A(2)/O process by anaerobic phosphorus release of activated sludge.
    Li J; Jin Y; Guo Y; He J
    Water Sci Technol; 2013; 67(11):2437-43. PubMed ID: 23752374
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biological nutrient removal from meat processing wastewater using a sequencing batch reactor.
    Thayalakumaran N; Bhamidimarri R; Bickers PO
    Water Sci Technol; 2003; 47(10):101-8. PubMed ID: 12862223
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of the rotifer Lecane inermis, a potential sludge bulking control agent, on process parameters in a laboratory-scale SBR system.
    Kocerba-Soroka W; Fiałkowska E; Pajdak-Stós A; Sobczyk M; Pławecka M; Fyda J
    Water Sci Technol; 2013; 68(9):2012-8. PubMed ID: 24225102
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phosphorus recycling in sewage treatment plants with biological phosphorus removal.
    Heinzmann B
    Water Sci Technol; 2005; 52(10-11):543-8. PubMed ID: 16459832
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge.
    Yilmaz G; Lemaire R; Keller J; Yuan Z
    Biotechnol Bioeng; 2008 Jun; 100(3):529-41. PubMed ID: 18098318
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous sludge reduction and nutrient removal (SSRNR) with interaction between Tubificidae and microorganisms: a full-scale study.
    Lou J; Sun P; Guo M; Wu G; Song Y
    Bioresour Technol; 2011 Dec; 102(24):11132-6. PubMed ID: 22001059
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of anaerobic fermentation on dehydrated sludge.
    Lu H; Dai R; Liu Y; Song A; Liu X
    Water Sci Technol; 2013; 67(11):2630-6. PubMed ID: 23752399
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Factors affecting the distribution of heavy metals in wastewater treatment processes: role of sludge particulate.
    Huang CP; Wang JM
    Water Sci Technol; 2001; 44(10):47-52. PubMed ID: 11794680
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of selective organic fractions on denitrification rates using Salsnes Filter as primary treatment.
    Razafimanantsoa VA; Ydstebø L; Bilstad T; Sahu AK; Rusten B
    Water Sci Technol; 2014; 69(9):1942-8. PubMed ID: 24804671
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A pilot study on accelerated sludge degradation by a high-concentration membrane bioreactor coupled with sludge pretreatment.
    Yeom IT; Lee KR; Choi YG; Kim HS; Kwon JH; Lee UJ; Lee YH
    Water Sci Technol; 2005; 52(10-11):201-10. PubMed ID: 16459793
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biochar produced from anaerobically digested fiber reduces phosphorus in dairy lagoons.
    Streubel JD; Collins HP; Tarara JM; Cochran RL
    J Environ Qual; 2012; 41(4):1166-74. PubMed ID: 22751059
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor.
    Elmitwalli TA; Otterpohl R
    Water Res; 2007 Mar; 41(6):1379-87. PubMed ID: 17276482
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced heavy metals removal without phosphorus loss from anaerobically digested sewage sludge.
    Ito A; Takahashi K; Aizawa J; Umita T
    Water Sci Technol; 2008; 58(1):201-6. PubMed ID: 18653955
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source.
    Wong JW; Xiang L; Gu XY; Zhou LX
    Chemosphere; 2004 Apr; 55(1):101-7. PubMed ID: 14720552
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combined UASB reactor and DAF/BF/anoxic/aerobic process for the removal of high-concentration organic matter and nutrients from slurry-type swine waste.
    Kim BU; Won CH; Rim JM
    Water Sci Technol; 2004; 49(5-6):199-205. PubMed ID: 15137424
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intermittent operation of low pressure UF membranes for sewage reuse at household level.
    Diamantis VI; Anagnostopoulos K; Melidis P; Ntougias S; Aivasidis A
    Water Sci Technol; 2013; 68(4):799-806. PubMed ID: 23985509
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimising the recovery and re-use of phosphorus from wastewater effluent for sustainable fertiliser development.
    Shepherd JG; Sohi SP; Heal KV
    Water Res; 2016 May; 94():155-165. PubMed ID: 26945452
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimisation of Noosa BNR plant to improve performance and reduce operating costs.
    Thomas M; Wright P; Blackall L; Urbain V; Keller J
    Water Sci Technol; 2003; 47(12):141-8. PubMed ID: 12926681
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced biological phosphorus removal process implemented in membrane bioreactors to improve phosphorous recovery and recycling.
    Lesjean B; Gnirss R; Adam C; Kraume M; Luck F
    Water Sci Technol; 2003; 48(1):87-94. PubMed ID: 12926624
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Heavy metal removal from contaminated sludge for land application: a review.
    Babel S; del Mundo Dacera D
    Waste Manag; 2006; 26(9):988-1004. PubMed ID: 16298121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.