These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23871312)

  • 61. Composite blends of gold nanorods and poly(t-butylacrylate) beads as new substrates for SERS.
    Fateixa S; Pinheiro PC; Nogueira HI; Trindade T
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Sep; 113():100-6. PubMed ID: 23714187
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Silver coated platinum core-shell nanostructures on etched Si nanowires: atomic layer deposition (ALD) processing and application in SERS.
    Sivakov VA; Höflich K; Becker M; Berger A; Stelzner T; Elers KE; Pore V; Ritala M; Christiansen SH
    Chemphyschem; 2010 Jun; 11(9):1995-2000. PubMed ID: 20446286
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Synthesis and characterization of dendritic and porous Ag-Pd alloy nanostructures.
    Chen L; Liu Y
    J Colloid Interface Sci; 2011 Dec; 364(1):100-6. PubMed ID: 21889153
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Silica coated gold nanoaggregates prepared by reverse microemulsion method: dual mode probes for multiplex immunoassay using SERS and fluorescence.
    Wang Z; Zong S; Chen H; Wu H; Cui Y
    Talanta; 2011 Oct; 86():170-7. PubMed ID: 22063527
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Surface-enhanced Raman scattering of 4-aminobenzenethiol in Ag sol: relative intensity of a1- and b2-type bands invariant against aggregation of Ag nanoparticles.
    Kim K; Yoon JK; Lee HB; Shin D; Shin KS
    Langmuir; 2011 Apr; 27(8):4526-31. PubMed ID: 21405076
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Synthesis of CuTCNQ/Au microrods by galvanic replacement of semiconducting phase I CuTCNQ with KAuBr4 in aqueous medium.
    Pearson A; O'Mullane AP; Bhargava SK; Bansal V
    Inorg Chem; 2012 Aug; 51(16):8791-801. PubMed ID: 22853734
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nanosensors based on viologen functionalized silver nanoparticles: few molecules surface-enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons in interparticle hot spots.
    Guerrini L; Garcia-Ramos JV; Domingo C; Sanchez-Cortes S
    Anal Chem; 2009 Feb; 81(4):1418-25. PubMed ID: 19215145
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Colloid-Interface-Assisted Laser Irradiation of Nanocrystals Superlattices to be Scalable Plasmonic Superstructures with Novel Activities.
    Huang L; Wan X; Rong H; Yao Y; Xu M; Liu J; Ji M; Liu J; Jiang L; Zhang J
    Small; 2018 Apr; 14(16):e1703501. PubMed ID: 29430863
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Controllable Preparation of Gold Nanocrystals with Different Porous Structures for SERS Sensing.
    Qin Y; Fang D; Wu Y; Wu Y; Yao W
    Molecules; 2023 Mar; 28(5):. PubMed ID: 36903564
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Galvanic Replacement Reaction as a Route to Prepare Nanoporous Aluminum for UV Plasmonics.
    Garoli D; Schirato A; Giovannini G; Cattarin S; Ponzellini P; Calandrini E; Proietti Zaccaria R; D'Amico F; Pachetti M; Yang W; Jin HJ; Krahne R; Alabastri A
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947927
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Triple-layer Fabry-Perot/SPP aluminum absorber in the visible and near-infrared region.
    Shu S; Li YY
    Opt Lett; 2015 Mar; 40(6):934-7. PubMed ID: 25768150
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Gold Nanocages for Biomedical Applications.
    Skrabalak SE; Chen J; Au L; Lu X; Li X; Xia Y
    Adv Mater; 2007 Oct; 19(20):3177-3184. PubMed ID: 18648528
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging.
    Wang Y; Liu Y; Luehmann H; Xia X; Wan D; Cutler C; Xia Y
    Nano Lett; 2013 Feb; 13(2):581-5. PubMed ID: 23360442
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Asymmetric AgPd-AuNR heterostructure with enhanced photothermal performance and SERS activity.
    Zhang H; Liu Z; Kang X; Guo J; Ma W; Cheng S
    Nanoscale; 2016 Jan; 8(4):2242-8. PubMed ID: 26744075
    [TBL] [Abstract][Full Text] [Related]  

  • 76. How Ag Nanospheres Are Transformed into AgAu Nanocages.
    Moreau LM; Schurman CA; Kewalramani S; Shahjamali MM; Mirkin CA; Bedzyk MJ
    J Am Chem Soc; 2017 Sep; 139(35):12291-12298. PubMed ID: 28800390
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Formation of substrate-based gold nanocage chains through dealloying with nitric acid.
    Yan Z; Wu Y; Di J
    Beilstein J Nanotechnol; 2015; 6():1362-8. PubMed ID: 26199839
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Pearson's principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages.
    Nai J; Tian Y; Guan X; Guo L
    J Am Chem Soc; 2013 Oct; 135(43):16082-91. PubMed ID: 23724779
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Identification of a critical intermediate in galvanic exchange reactions by single-nanoparticle-resolved kinetics.
    Smith JG; Yang Q; Jain PK
    Angew Chem Int Ed Engl; 2014 Mar; 53(11):2867-72. PubMed ID: 24677345
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Porous Au-Ag Nanoparticles from Galvanic Replacement Applied as Single-Particle SERS Probe for Quantitative Monitoring.
    Wang L; Patskovsky S; Gauthier-Soumis B; Meunier M
    Small; 2022 Jan; 18(1):e2107532. PubMed ID: 34985198
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.