These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 23871391)

  • 1. Toxicity of indoxyl derivative accumulation in bacteria and its use as a new counterselection principle.
    Angelov A; Li H; Geissler A; Leis B; Liebl W
    Syst Appl Microbiol; 2013 Dec; 36(8):585-92. PubMed ID: 23871391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Markerless Gene Deletion with Cytosine Deaminase in Thermus thermophilus Strain HB27.
    Wang L; Hoffmann J; Watzlawick H; Altenbuchner J
    Appl Environ Microbiol; 2016 Feb; 82(4):1249-1255. PubMed ID: 26655764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indigogenic substrates for detection and localization of enzymes.
    Kiernan JA
    Biotech Histochem; 2007 Apr; 82(2):73-103. PubMed ID: 17577701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of lipolytic activities in Thermus thermophilus HB27.
    Leis B; Angelov A; Li H; Liebl W
    J Biotechnol; 2014 Dec; 191():150-7. PubMed ID: 25102235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. beta-Glucosidase as a reporter for the gene expression studies in Thermus thermophilus and constitutive expression of DNA repair genes.
    Ohta T; Tokishita S; Imazuka R; Mori I; Okamura J; Yamagata H
    Mutagenesis; 2006 Jul; 21(4):255-60. PubMed ID: 16777922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27.
    Friedrich A; Hartsch T; Averhoff B
    Appl Environ Microbiol; 2001 Jul; 67(7):3140-8. PubMed ID: 11425734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An initial characterization of the mercury resistance (mer) system of the thermophilic bacterium Thermus thermophilus HB27.
    Wang Y; Freedman Z; Lu-Irving P; Kaletsky R; Barkay T
    FEMS Microbiol Ecol; 2009 Jan; 67(1):118-29. PubMed ID: 19120462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide Dismutase and Pseudocatalase Increase Tolerance to Hg(II) in Thermus thermophilus HB27 by Maintaining the Reduced Bacillithiol Pool.
    Norambuena J; Hanson TE; Barkay T; Boyd JM
    mBio; 2019 Apr; 10(2):. PubMed ID: 30940703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus.
    Kasai K; Nishizawa T; Takahashi K; Hosaka T; Aoki H; Ochi K
    J Bacteriol; 2006 Oct; 188(20):7111-22. PubMed ID: 17015650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27.
    Schwarzenlander C; Averhoff B
    FEBS J; 2006 Sep; 273(18):4210-8. PubMed ID: 16939619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A color-based competition assay for studying bacterial stress responses in Micrococcus luteus.
    Havis S; Rangel J; Mali S; Bodunrin A; Housammy Z; Zimmerer R; Murphy J; Widger WR; Bark SJ
    FEMS Microbiol Lett; 2019 Mar; 366(5):. PubMed ID: 30865770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of new cloning vectors that employ the phytoene synthase encoding gene for color screening of cloned DNA inserts in Thermus thermophilus.
    Fujita A; Misumi Y; Honda S; Sato T; Koyama Y
    Gene; 2013 Sep; 527(2):655-62. PubMed ID: 23845779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Sensitivity of dissociation variants of Micrococcus luteus to the action of delta-endotoxins of Bacillus thuringiensis].
    Iudina TG; Mil'ko ES; Egorov NS
    Mikrobiologiia; 1996; 65(3):365-9. PubMed ID: 8992244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cloning and expression of Micrococcus luteus IAM 14879 Rpf and its role in the recovery of the VBNC state in Rhodococcus sp. DS471].
    Ding L; Zhang P; Hong H; Lin H; Yokota A
    Wei Sheng Wu Xue Bao; 2012 Jan; 52(1):77-82. PubMed ID: 22489463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of a low-molecular-weight, multicopy plasmid, pNHK101, from Thermus sp. TK10 and its use as an expression vector for T. thermophilus HB27.
    Kobayashi H; Kuwae A; Maseda H; Nakamura A; Hoshino T
    Plasmid; 2005 Jul; 54(1):70-9. PubMed ID: 15907540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acids as nutritional factors and (p)ppGpp as an alarmone of the stringent response regulate natural transformation in Micrococcus luteus.
    Lichev A; Angelov A; Cucurull I; Liebl W
    Sci Rep; 2019 Jul; 9(1):11030. PubMed ID: 31363120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New host-vector system for Thermus spp. based on the malate dehydrogenase gene.
    Kayser KJ; Kilbane JJ
    J Bacteriol; 2001 Mar; 183(5):1792-5. PubMed ID: 11160114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shuffling genes around in hot environments: the unique DNA transporter of Thermus thermophilus.
    Averhoff B
    FEMS Microbiol Rev; 2009 May; 33(3):611-26. PubMed ID: 19207744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Counterselection system for Geobacillus kaustophilus HTA426 through disruption of pyrF and pyrR.
    Suzuki H; Murakami A; Yoshida K
    Appl Environ Microbiol; 2012 Oct; 78(20):7376-83. PubMed ID: 22885745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of the multiplication of Micrococcus luteus by an autocrine growth factor.
    Mukamolova GV; Kormer SS; Kell DB; Kaprelyants AS
    Arch Microbiol; 1999 Jul; 172(1):9-14. PubMed ID: 10398746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.