These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 23871585)

  • 1. Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation.
    Gaber N; Gagliardi M; Patel P; Kinnear C; Zhang C; Chitayat D; Shannon P; Jaeggi E; Tabori U; Keller G; Mital S
    Am J Pathol; 2013 Sep; 183(3):720-34. PubMed ID: 23871585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia regulates basal and induced DNA synthesis and collagen type I production in human cardiac fibroblasts: effects of transforming growth factor-beta1, thyroid hormone, angiotensin II and basic fibroblast growth factor.
    Agocha A; Lee HW; Eghbali-Webb M
    J Mol Cell Cardiol; 1997 Aug; 29(8):2233-44. PubMed ID: 9281454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An induced pluripotent stem cell model of hypoplastic left heart syndrome (HLHS) reveals multiple expression and functional differences in HLHS-derived cardiac myocytes.
    Jiang Y; Habibollah S; Tilgner K; Collin J; Barta T; Al-Aama JY; Tesarov L; Hussain R; Trafford AW; Kirkwood G; Sernagor E; Eleftheriou CG; Przyborski S; Stojković M; Lako M; Keavney B; Armstrong L
    Stem Cells Transl Med; 2014 Apr; 3(4):416-23. PubMed ID: 24591732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of hypoxia and cAMP in the transdifferentiation of human fetal cardiac fibroblasts: implications for progression to scarring in autoimmune-associated congenital heart block.
    Clancy RM; Zheng P; O'Mahony M; Izmirly P; Zavadil J; Gardner L; Buyon JP
    Arthritis Rheum; 2007 Dec; 56(12):4120-31. PubMed ID: 18050204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic prostacyclin agonist, ONO1301, enhances endogenous myocardial repair in a hamster model of dilated cardiomyopathy: a promising regenerative therapy for the failing heart.
    Ishimaru K; Miyagawa S; Fukushima S; Saito A; Sakai Y; Ueno T; Sawa Y
    J Thorac Cardiovasc Surg; 2013 Dec; 146(6):1516-25. PubMed ID: 24229503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential changes in TGF-β/BMP signaling pathway in the right ventricular myocardium of newborns with hypoplastic left heart syndrome.
    Ricci M; Mohapatra B; Urbiztondo A; Birusingh RJ; Morgado M; Rodriguez MM; Lincoln J; Vatta M
    J Card Fail; 2010 Aug; 16(8):628-34. PubMed ID: 20670841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis.
    Yang C; Xu Y; Yu M; Lee D; Alharti S; Hellen N; Ahmad Shaik N; Banaganapalli B; Sheikh Ali Mohamoud H; Elango R; Przyborski S; Tenin G; Williams S; O'Sullivan J; Al-Radi OO; Atta J; Harding SE; Keavney B; Lako M; Armstrong L
    Hum Mol Genet; 2017 Aug; 26(16):3031-3045. PubMed ID: 28521042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional and global myocardial deformation of the fetal right ventricle in hypoplastic left heart syndrome.
    Miller TA; Puchalski MD; Weng C; Menon SC
    Prenat Diagn; 2012 Oct; 32(10):949-53. PubMed ID: 22806693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling molecular targets of TGF-beta1 in prostate fibroblast-to-myofibroblast transdifferentiation.
    Untergasser G; Gander R; Lilg C; Lepperdinger G; Plas E; Berger P
    Mech Ageing Dev; 2005 Jan; 126(1):59-69. PubMed ID: 15610763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential Defects in Cardiac Lineage Commitment and Maturation Cause Hypoplastic Left Heart Syndrome.
    Krane M; Dreßen M; Santamaria G; My I; Schneider CM; Dorn T; Laue S; Mastantuono E; Berutti R; Rawat H; Gilsbach R; Schneider P; Lahm H; Schwarz S; Doppler SA; Paige S; Puluca N; Doll S; Neb I; Brade T; Zhang Z; Abou-Ajram C; Northoff B; Holdt LM; Sudhop S; Sahara M; Goedel A; Dendorfer A; Tjong FVY; Rijlaarsdam ME; Cleuziou J; Lang N; Kupatt C; Bezzina C; Lange R; Bowles NE; Mann M; Gelb BD; Crotti L; Hein L; Meitinger T; Wu S; Sinnecker D; Gruber PJ; Laugwitz KL; Moretti A
    Circulation; 2021 Oct; 144(17):1409-1428. PubMed ID: 34694888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism.
    Jeon ES; Moon HJ; Lee MJ; Song HY; Kim YM; Bae YC; Jung JS; Kim JH
    J Cell Sci; 2006 Dec; 119(Pt 23):4994-5005. PubMed ID: 17105765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of transforming growth factor-beta1 and hypoxia-inducible factor-1alpha in an experimental model of kidney transplantation.
    Lario S; Mendes D; Bescós M; Iñigo P; Campos B; Alvarez R; Alcaraz A; Rivera-Fillat F; Campistol JM
    Transplantation; 2003 May; 75(10):1647-54. PubMed ID: 12777850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Structural and Functional Abnormalities of the Myocardium and the Ascending Aorta in Fetus with Hypoplastic Left Heart Syndrome.
    Jiang Y; Xu Y; Tang J; Xia H
    Biomed Res Int; 2016; 2016():2616729. PubMed ID: 26981527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiologically low oxygen concentrations in fetal skin regulate hypoxia-inducible factor 1 and transforming growth factor-beta3.
    Scheid A; Wenger RH; Schäffer L; Camenisch I; Distler O; Ferenc A; Cristina H; Ryan HE; Johnson RS; Wagner KF; Stauffer UG; Bauer C; Gassmann M; Meuli M
    FASEB J; 2002 Mar; 16(3):411-3. PubMed ID: 11790723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of PPAR-α induces cell cycle arrest and inhibits transforming growth factor-β1 induction of smooth muscle cell phenotype in 10T1/2 mesenchymal cells.
    Lien SC; Wei SY; Chang SF; Chang MD; Chang JY; Chiu JJ
    Cell Signal; 2013 May; 25(5):1252-63. PubMed ID: 23385087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disturbed myocardial connexin 43 and N-cadherin expressions in hypoplastic left heart syndrome and borderline left ventricle.
    Mahtab EA; Gittenberger-de Groot AC; Vicente-Steijn R; Lie-Venema H; Rijlaarsdam ME; Hazekamp MG; Bartelings MM
    J Thorac Cardiovasc Surg; 2012 Dec; 144(6):1315-22. PubMed ID: 22405962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoplastic left heart syndrome myocytes are differentiated but possess a unique phenotype.
    Bohlmeyer TJ; Helmke S; Ge S; Lynch J; Brodsky G; Sederberg JH; Robertson AD; Minobe W; Bristow MR; Perryman MB
    Cardiovasc Pathol; 2003; 12(1):23-31. PubMed ID: 12598014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stem cell differentiation requires a paracrine pathway in the heart.
    Behfar A; Zingman LV; Hodgson DM; Rauzier JM; Kane GC; Terzic A; Pucéat M
    FASEB J; 2002 Oct; 16(12):1558-66. PubMed ID: 12374778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [HYPOPLASTIC LEFT HEART SYNDROME: MORPHOGENESIS OF PATOMORPHOLOGICAL TYPES OF THE LEFT VENTRICLE].
    Savchuk T
    Georgian Med News; 2020 Feb; (299):55-61. PubMed ID: 32242845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A potentially curative fetal intervention for hypoplastic left heart syndrome.
    Hattam AT
    Med Hypotheses; 2018 Jan; 110():132-137. PubMed ID: 29317056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.