These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 23871600)
1. Quantitative nucleation and growth kinetics of gold nanoparticles via model-assisted dynamic spectroscopic approach. Zhou Y; Wang H; Lin W; Lin L; Gao Y; Yang F; Du M; Fang W; Huang J; Sun D; Li Q J Colloid Interface Sci; 2013 Oct; 407():8-16. PubMed ID: 23871600 [TBL] [Abstract][Full Text] [Related]
2. pH Dependence of the size and crystallographic orientation of the gold nanoparticles prepared by seed-mediated growth. Rahman MR; Saleh FS; Okajima T; Ohsaka T Langmuir; 2011 Apr; 27(8):5126-35. PubMed ID: 21410194 [TBL] [Abstract][Full Text] [Related]
3. UV-Vis and NMR study of the formation of gold nanoparticles by citrate reduction: observation of gold-citrate aggregates. Doyen M; Bartik K; Bruylants G J Colloid Interface Sci; 2013 Jun; 399():1-5. PubMed ID: 23538051 [TBL] [Abstract][Full Text] [Related]
4. In-situ incorporation of gold nanoparticles of desired sizes into three-dimensional macroporous matrixes. Ding S; Qian W; Tan Y; Wang Y Langmuir; 2006 Aug; 22(17):7105-8. PubMed ID: 16893196 [TBL] [Abstract][Full Text] [Related]
5. Kinetic approach for the study of noncovalent interaction between [Ru(NH3)5pz]2+ and gold nanoparticles. Grueso E; Alcantara D; Martinez J; Mancera M; Penades S; Sanchez F; Pradogotor R J Phys Chem A; 2007 Oct; 111(39):9769-74. PubMed ID: 17850050 [TBL] [Abstract][Full Text] [Related]
6. Size sorting of citrate reduced gold nanoparticles by sedimentation field-flow fractionation. Contado C; Argazzi R J Chromatogr A; 2009 Dec; 1216(52):9088-98. PubMed ID: 19717161 [TBL] [Abstract][Full Text] [Related]
7. Analysis of time-dependent conjugation of gold nanoparticles with an antiparkinsonian molecule by using curve resolution methods. Amigo JM; Bastús NG; Hoen R; Vázquez-Campos S; Varón M; Royo M; Puntes V Anal Chim Acta; 2011 Jan; 683(2):170-7. PubMed ID: 21167967 [TBL] [Abstract][Full Text] [Related]
8. Development of methodology based on the formation process of gold nanoshells for detecting hydrogen peroxide scavenging activity. Li H; Ma X; Dong J; Qian W Anal Chem; 2009 Nov; 81(21):8916-22. PubMed ID: 19824625 [TBL] [Abstract][Full Text] [Related]
9. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine. Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943 [TBL] [Abstract][Full Text] [Related]
10. Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging. Gao J; Huang X; Liu H; Zan F; Ren J Langmuir; 2012 Mar; 28(9):4464-71. PubMed ID: 22276658 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of pH sensitive gold nanoparticles for potential application in radiosensitization. Das A; Chadha R; Maiti N; Kapoor S Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():34-41. PubMed ID: 26117736 [TBL] [Abstract][Full Text] [Related]
12. Amperometric detection of hypoxanthine and xanthine by enzymatic amplification using a gold nanoparticles-carbon nanohorn hybrid as the carrier. Zhang L; Lei J; Zhang J; Ding L; Ju H Analyst; 2012 Jul; 137(13):3126-31. PubMed ID: 22624146 [TBL] [Abstract][Full Text] [Related]
13. One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length. Miranda A; Malheiro E; Skiba E; Quaresma P; Carvalho PA; Eaton P; de Castro B; Shelnutt JA; Pereira E Nanoscale; 2010 Oct; 2(10):2209-16. PubMed ID: 20714654 [TBL] [Abstract][Full Text] [Related]
14. Biogenic synthesis of multidimensional gold nanoparticles assisted by Streptomyces hygroscopicus and its electrochemical and antibacterial properties. Sadhasivam S; Shanmugam P; Veerapandian M; Subbiah R; Yun K Biometals; 2012 Apr; 25(2):351-60. PubMed ID: 22069027 [TBL] [Abstract][Full Text] [Related]
15. Effect of surface oxidation on the interaction of 1-methylaminopyrene with gold nanoparticles. Zhang J; Riabinina D; Chaker M; Ma D Langmuir; 2012 Feb; 28(5):2858-65. PubMed ID: 22214268 [TBL] [Abstract][Full Text] [Related]
16. Intermediate-dominated controllable biomimetic synthesis of gold nanoparticles in a quasi-biological system. Cui R; Zhang MX; Tian ZQ; Zhang ZL; Pang DW Nanoscale; 2010 Oct; 2(10):2120-5. PubMed ID: 20820640 [TBL] [Abstract][Full Text] [Related]
17. Interaction of gold nanoparticles with free radicals and their role in enhancing the scavenging activity of ascorbic acid. Razzaq H; Saira F; Yaqub A; Qureshi R; Mumtaz M; Saleemi S J Photochem Photobiol B; 2016 Aug; 161():266-72. PubMed ID: 27288656 [TBL] [Abstract][Full Text] [Related]
18. Glycation-assisted synthesized gold nanoparticles inhibit growth of bone cancer cells. Rahim M; Iram S; Khan MS; Khan MS; Shukla AR; Srivastava AK; Ahmad S Colloids Surf B Biointerfaces; 2014 May; 117():473-9. PubMed ID: 24368207 [TBL] [Abstract][Full Text] [Related]
19. Seedless synthesis of octahedral gold nanoparticles in condensed surfactant phase. Cao C; Park S; Sim SJ J Colloid Interface Sci; 2008 Jun; 322(1):152-7. PubMed ID: 18395217 [TBL] [Abstract][Full Text] [Related]
20. Au(III)-CTAB reduction by ascorbic acid: preparation and characterization of gold nanoparticles. Khan Z; Singh T; Hussain JI; Hashmi AA Colloids Surf B Biointerfaces; 2013 Apr; 104():11-7. PubMed ID: 23298582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]