These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23871690)

  • 1. Voice controlled wheelchairs: fine control by humming.
    Peixoto N; Nik HG; Charkhkar H
    Comput Methods Programs Biomed; 2013 Oct; 112(1):156-65. PubMed ID: 23871690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voice control of a powered wheelchair.
    Simpson RC; Levine SP
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):122-5. PubMed ID: 12236450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of an ambient noise insensitive hum-based powered wheelchair controller.
    Falk TH; Andrews A; Hotzé F; Wan E; Chau T
    Disabil Rehabil Assist Technol; 2012 May; 7(3):242-8. PubMed ID: 22074344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A facial expression controlled wheelchair for people with disabilities.
    Rabhi Y; Mrabet M; Fnaiech F
    Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated control and related technology of assistive devices.
    Ding D; Cooper RA; Kaminski BA; Kanaly JR; Allegretti A; Chaves E; Hubbard S
    Assist Technol; 2003; 15(2):89-97. PubMed ID: 15137725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vision based interface system for hands free control of an Intelligent Wheelchair.
    Ju JS; Shin Y; Kim EY
    J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Case-based reasoning emulation of persons for wheelchair navigation.
    Peula JM; Urdiales C; Herrero I; Fernandez-Carmona M; Sandoval F
    Artif Intell Med; 2012 Oct; 56(2):109-21. PubMed ID: 23068883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wheelchair Neuro Fuzzy Control and Tracking System Based on Voice Recognition.
    Abdulghani MM; Al-Aubidy KM; Ali MM; Hamarsheh QJ
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32438575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward gesture controlled wheelchair: a proof of concept study.
    Kawarazaki N; Stefanov D; Diaz AI
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650348. PubMed ID: 24187167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voice controlled wheelchair.
    Clark JA; Roemer RB
    Arch Phys Med Rehabil; 1977 Apr; 58(4):169-75. PubMed ID: 849131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A subspace approach based on embedded prewhitening for voice activity detection.
    Kim DK; Chang JH
    J Acoust Soc Am; 2011 Nov; 130(5):EL304-10. PubMed ID: 22088032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair.
    Long J; Li Y; Wang H; Yu T; Pan J; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):720-9. PubMed ID: 22692936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biometrically modulated collaborative control for an assistive wheelchair.
    Urdiales C; Fernandez-Espejo B; Annicchiaricco R; Sandoval F; Caltagirone C
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):398-408. PubMed ID: 20699203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing of speech signals for physical and sensory disabilities.
    Levitt H
    Proc Natl Acad Sci U S A; 1995 Oct; 92(22):9999-10006. PubMed ID: 7479816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eye and Voice-Controlled Human Machine Interface System for Wheelchairs Using Image Gradient Approach.
    Anwer S; Waris A; Sultan H; Butt SI; Zafar MH; Sarwar M; Niazi IK; Shafique M; Pujari AN
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32993047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Hephaestus Smart Wheelchair System.
    Simpson RC; Poirot D; Baxter F
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):118-22. PubMed ID: 12236449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control Systems and Electronic Instrumentation Applied to Autonomy in Wheelchair Mobility: The State of the Art.
    Callejas-Cuervo M; González-Cely AX; Bastos-Filho T
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A voice-activated integrated development environment for manually disabled programmers.
    Langan DD; Hain TF; Hubbell TJ; Frøseth J
    Disabil Rehabil Assist Technol; 2008 Jan; 3(1):82-92. PubMed ID: 18416520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filter frequency selection for manual wheelchair biomechanics.
    Cooper RA; DiGiovine CP; Boninger ML; Shimada SD; Koontz AM; Baldwin MA
    J Rehabil Res Dev; 2002; 39(3):323-36. PubMed ID: 12173753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new design for an old concept of wheelchair pushrim.
    Medola FO; Fortulan CA; Purquerio Bde M; Elui VM
    Disabil Rehabil Assist Technol; 2012 May; 7(3):234-41. PubMed ID: 22066518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.