BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23871714)

  • 1. A dynamical system that describes vein graft adaptation and failure.
    Garbey M; Berceli SA
    J Theor Biol; 2013 Nov; 336():209-20. PubMed ID: 23871714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wall shear modulation of cytokines in early vein grafts.
    Jiang Z; Berceli SA; Pfahnl CL; Wu L; Goldman D; Tao M; Kagayama M; Matsukawa A; Ozaki CK
    J Vasc Surg; 2004 Aug; 40(2):345-50. PubMed ID: 15297832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of vein graft intimal hyperplasia.
    Tran-Son-Tay R; Hwang M; Berceli SA; Ozaki CK; Garbey M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5807-10. PubMed ID: 18003333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of hemodynamic forces in the ex vivo arterialization of human saphenous veins.
    Berard X; Déglise S; Alonso F; Saucy F; Meda P; Bordenave L; Corpataux JM; Haefliger JA
    J Vasc Surg; 2013 May; 57(5):1371-82. PubMed ID: 23351647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamics of vein graft remodeling induced by hemodynamic forces: a mathematical model.
    Hwang M; Berceli SA; Garbey M; Kim NH; Tran-Son-Tay R
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):411-23. PubMed ID: 21691849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A versatile hybrid agent-based, particle and partial differential equations method to analyze vascular adaptation.
    Garbey M; Casarin S; Berceli SA
    Biomech Model Mechanobiol; 2019 Feb; 18(1):29-44. PubMed ID: 30094656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experiment-based model of vein graft remodeling induced by shear stress.
    Tran-Son-Tay R; Hwang M; Garbey M; Jiang Z; Ozaki CK; Berceli SA
    Ann Biomed Eng; 2008 Jul; 36(7):1083-91. PubMed ID: 18415018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vein graft adaptation and fistula maturation in the arterial environment.
    Lu DY; Chen EY; Wong DJ; Yamamoto K; Protack CD; Williams WT; Assi R; Hall MR; Sadaghianloo N; Dardik A
    J Surg Res; 2014 May; 188(1):162-73. PubMed ID: 24582063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of shear stress on early vein graft remodeling: a biomechanical analysis.
    Fernandez CM; Goldman DR; Jiang Z; Ozaki CK; Tran-Son-Tay R; Berceli SA
    Ann Biomed Eng; 2004 Nov; 32(11):1484-93. PubMed ID: 15636109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in wall tension and shear stress modulate tyrosine kinase signaling and wall remodeling in experimental vein grafts.
    Huynh TT; Davies MG; Trovato MJ; Svendsen E; Hagen PO
    J Vasc Surg; 1999 Feb; 29(2):334-44. PubMed ID: 9950991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of vein graft adaptation to the arterial circulation: insights into the neointimal algorithm and management strategies.
    Muto A; Model L; Ziegler K; Eghbalieh SD; Dardik A
    Circ J; 2010 Aug; 74(8):1501-12. PubMed ID: 20606326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational simulation of the adaptive capacity of vein grafts in response to increased pressure.
    Ramachandra AB; Sankaran S; Humphrey JD; Marsden AL
    J Biomech Eng; 2015 Mar; 137(3):0310091-03100910. PubMed ID: 25376151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slower onset of low shear stress leads to less neointimal thickening in experimental vein grafts.
    Baldwin ZK; Chandiwal A; Huang W; Vosicky JE; Balasubramanian V; Curi MA; Schwartz LB
    Ann Vasc Surg; 2006 Jan; 20(1):106-13. PubMed ID: 16374533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel vein graft model: adaptation to differential flow environments.
    Jiang Z; Wu L; Miller BL; Goldman DR; Fernandez CM; Abouhamze ZS; Ozaki CK; Berceli SA
    Am J Physiol Heart Circ Physiol; 2004 Jan; 286(1):H240-5. PubMed ID: 14500133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is there a haemodynamic advantage associated with cuffed arterial anastomoses?
    Cole JS; Watterson JK; O'Reilly MJ
    J Biomech; 2002 Oct; 35(10):1337-46. PubMed ID: 12231279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wall shear stresses in small and large two-way bypass grafts.
    Qiao A; Liu Y; Guo Z
    Med Eng Phys; 2006 Apr; 28(3):251-8. PubMed ID: 16029954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidating the role of graft compliance mismatch on intimal hyperplasia using an ex vivo organ culture model.
    Post A; Diaz-Rodriguez P; Balouch B; Paulsen S; Wu S; Miller J; Hahn M; Cosgriff-Hernandez E
    Acta Biomater; 2019 Apr; 89():84-94. PubMed ID: 30878448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early remodeling of lower extremity vein grafts: inflammation influences biomechanical adaptation.
    Owens CD; Rybicki FJ; Wake N; Schanzer A; Mitsouras D; Gerhard-Herman MD; Conte MS
    J Vasc Surg; 2008 Jun; 47(6):1235-42. PubMed ID: 18440187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.