BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23872003)

  • 1. Stopped-flow DNA polymerase assay by continuous monitoring of dNTP incorporation by fluorescence.
    Montgomery JL; Rejali N; Wittwer CT
    Anal Biochem; 2013 Oct; 441(2):133-9. PubMed ID: 23872003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of pyrophosphate as a universal approach to determine polymerase activity and assay polymerase inhibitors.
    Malvezzi S; Sturla SJ; Tanasova M
    Anal Biochem; 2015 Jun; 478():1-7. PubMed ID: 25772306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorogenic polymerase, endonuclease, and ligase assays based on DNA substrates labeled with a single fluorophore.
    Nikiforov TT
    Anal Biochem; 2011 May; 412(2):229-36. PubMed ID: 21303650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of nucleotide sequence and temperature on the activity of thermostable DNA polymerases.
    Montgomery JL; Rejali N; Wittwer CT
    J Mol Diagn; 2014 May; 16(3):305-13. PubMed ID: 24607271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altering DNA polymerase incorporation fidelity by distorting the dNTP binding pocket with a bulky carcinogen-damaged template.
    Yan SF; Wu M; Geacintov NE; Broyde S
    Biochemistry; 2004 Jun; 43(24):7750-65. PubMed ID: 15196018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of DNA Polymerase Incorporation Kinetics of Dye-Labeled Nucleotides Using Total Internal Reflection Fluorescence Microscopy.
    Walsh MT; Roller EE; Ko KS; Huang X
    Biochemistry; 2015 Jul; 54(26):4019-21. PubMed ID: 26096371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase.
    Otto MR; Bloom LB; Goodman MF; Beechem JM
    Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of DNA oligonucleotides containing C5-ethynylbenzenesulfonamide-modified nucleotides (EBNA) by polymerases towards the construction of base functionalized nucleic acids.
    Goubet A; Chardon A; Kumar P; Sharma PK; Veedu RN
    Bioorg Med Chem Lett; 2013 Feb; 23(3):761-3. PubMed ID: 23265899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases.
    Einolf HJ; Schnetz-Boutaud N; Guengerich FP
    Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved PCR performance using mutant Tpa-S DNA polymerases from the hyperthermophilic archaeon Thermococcus pacificus.
    Ppyun H; Kim I; Cho SS; Seo KJ; Yoon K; Kwon ST
    J Biotechnol; 2012 Dec; 164(2):363-70. PubMed ID: 23395617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on steady-state kinetics of nucleotide analogues incorporation by non-gel CE.
    Li W; Cao M; Pei L; Ling X; Li B; Yang Z
    Electrophoresis; 2010 Jan; 31(3):507-11. PubMed ID: 20119962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for filling in the cohesive ends of double-stranded DNA using Pfu DNA polymerase.
    Yang S; Li X; Ding D; Hou J; Jin Z; Yu X; Bo T; Li W; Li M
    Biotechnol Appl Biochem; 2005 Dec; 42(Pt 3):223-6. PubMed ID: 15966861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the Rate and Substrate Specificity of Laboratory Evolved XNA Polymerases.
    Nikoomanzar A; Dunn MR; Chaput JC
    Anal Chem; 2017 Dec; 89(23):12622-12625. PubMed ID: 29148714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and PCR application of a new high-fidelity DNA polymerase from Thermococcus waiotapuensis.
    Cho SS; Kim KP; Lee KK; Youn MH; Kwon ST
    Enzyme Microb Technol; 2012 Dec; 51(6-7):334-41. PubMed ID: 23040388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of incorporation kinetics of non-fluorescent native nucleotides by DNA polymerases using fluorescence microscopy.
    Walsh MT; Huang X
    Nucleic Acids Res; 2017 Dec; 45(21):e175. PubMed ID: 29036327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of PCR reagents on DNA polymerase extension rates measured on real-time PCR instruments.
    Montgomery JL; Wittwer CT
    Clin Chem; 2014 Feb; 60(2):334-40. PubMed ID: 24081987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule and ensemble fluorescence assays for a functionally important conformational change in T7 DNA polymerase.
    Luo G; Wang M; Konigsberg WH; Xie XS
    Proc Natl Acad Sci U S A; 2007 Jul; 104(31):12610-5. PubMed ID: 17640918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Interaction of dNTP-binding sites of human DNA polymerase alpha and The Klenow fragment of Escherichia coli DNA polymerase I with nucleotides, pyrophosphate and their analogs].
    Nevinskiĭ GA; Potapova IA; Tarusova NB; Khalabuda OV; Khomov VV
    Mol Biol (Mosk); 1990; 24(1):104-16. PubMed ID: 2161489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refined model for primer/template binding by HIV-1 reverse transcriptase: pre-steady-state kinetic analyses of primer/template binding and nucleotide incorporation events distinguish between different binding modes depending on the nature of the nucleic acid substrate.
    Wöhrl BM; Krebs R; Goody RS; Restle T
    J Mol Biol; 1999 Sep; 292(2):333-44. PubMed ID: 10493879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative fluorescence-based steady-state assay of DNA polymerase.
    Driscoll MD; Rentergent J; Hay S
    FEBS J; 2014 Apr; 281(8):2042-50. PubMed ID: 24860875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.