BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 23872025)

  • 1. MicroRNAs in skeletal muscle biology and exercise adaptation.
    Kirby TJ; McCarthy JJ
    Free Radic Biol Med; 2013 Sep; 64():95-105. PubMed ID: 23872025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNAs involved in skeletal muscle differentiation.
    Luo W; Nie Q; Zhang X
    J Genet Genomics; 2013 Mar; 40(3):107-16. PubMed ID: 23522383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging role of MyomiRs as biomarkers and therapeutic targets in skeletal muscle diseases.
    Srivastava S; Rathor R; Singh SN; Suryakumar G
    Am J Physiol Cell Physiol; 2021 Nov; 321(5):C859-C875. PubMed ID: 34586896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. microRNAs in skeletal muscle differentiation and disease.
    Goljanek-Whysall K; Sweetman D; Münsterberg AE
    Clin Sci (Lond); 2012 Dec; 123(11):611-25. PubMed ID: 22888971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From Nutrient to MicroRNA: a Novel Insight into Cell Signaling Involved in Skeletal Muscle Development and Disease.
    Zhang Y; Yu B; He J; Chen D
    Int J Biol Sci; 2016; 12(10):1247-1261. PubMed ID: 27766039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training.
    Russell AP; Lamon S; Boon H; Wada S; Güller I; Brown EL; Chibalin AV; Zierath JR; Snow RJ; Stepto N; Wadley GD; Akimoto T
    J Physiol; 2013 Sep; 591(18):4637-53. PubMed ID: 23798494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA Profile and Adaptive Response to Exercise Training: A Review.
    Domańska-Senderowska D; Laguette MN; Jegier A; Cięszczyk P; September AV; Brzeziańska-Lasota E
    Int J Sports Med; 2019 Apr; 40(4):227-235. PubMed ID: 30791082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNAs differentially regulated in cardiac and skeletal muscle in health and disease: potential drug targets?
    Winbanks CE; Ooi JY; Nguyen SS; McMullen JR; Bernardo BC
    Clin Exp Pharmacol Physiol; 2014 Sep; 41(9):727-37. PubMed ID: 25115402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiopoietin-1 enhances skeletal muscle regeneration in mice.
    Mofarrahi M; McClung JM; Kontos CD; Davis EC; Tappuni B; Moroz N; Pickett AE; Huck L; Harel S; Danialou G; Hussain SN
    Am J Physiol Regul Integr Comp Physiol; 2015 Apr; 308(7):R576-89. PubMed ID: 25608750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation.
    Chen JF; Mandel EM; Thomson JM; Wu Q; Callis TE; Hammond SM; Conlon FL; Wang DZ
    Nat Genet; 2006 Feb; 38(2):228-33. PubMed ID: 16380711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis.
    Motohashi N; Alexander MS; Shimizu-Motohashi Y; Myers JA; Kawahara G; Kunkel LM
    J Cell Sci; 2013 Jun; 126(Pt 12):2678-91. PubMed ID: 23606743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNAs and Physical Activity.
    Altana V; Geretto M; Pulliero A
    Microrna; 2015; 4(2):74-85. PubMed ID: 26268469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation.
    Naguibneva I; Ameyar-Zazoua M; Polesskaya A; Ait-Si-Ali S; Groisman R; Souidi M; Cuvellier S; Harel-Bellan A
    Nat Cell Biol; 2006 Mar; 8(3):278-84. PubMed ID: 16489342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of microRNAs in the age-related changes in skeletal muscle and diet or exercise interventions to promote healthy aging in humans.
    McGregor RA; Poppitt SD; Cameron-Smith D
    Ageing Res Rev; 2014 Sep; 17():25-33. PubMed ID: 24833328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass.
    Cassano M; Quattrocelli M; Crippa S; Perini I; Ronzoni F; Sampaolesi M
    J Muscle Res Cell Motil; 2009 Dec; 30(7-8):243-53. PubMed ID: 20195710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CHC22 clathrin-GLUT4 transport pathway contributes to skeletal muscle regeneration.
    Hoshino S; Sakamoto K; Vassilopoulos S; Camus SM; Griffin CA; Esk C; Torres JA; Ohkoshi N; Ishii A; Tamaoka A; Funke BH; Kucherlapati R; Margeta M; Rando TA; Brodsky FM
    PLoS One; 2013; 8(10):e77787. PubMed ID: 24204966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. METTL3 regulates skeletal muscle specific miRNAs at both transcriptional and post-transcriptional levels.
    Diao LT; Xie SJ; Lei H; Qiu XS; Huang MC; Tao S; Hou YR; Hu YX; Sun YJ; Zhang Q; Xiao ZD
    Biochem Biophys Res Commun; 2021 May; 552():52-58. PubMed ID: 33740664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of microRNAs on skeletal muscle development.
    Wang J; Yang LZ; Zhang JS; Gong JX; Wang YH; Zhang CL; Chen H; Fang XT
    Gene; 2018 Aug; 668():107-113. PubMed ID: 29775754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dact1 is expressed during chicken and mouse skeletal myogenesis and modulated in human muscle diseases.
    Contriciani RE; da Veiga FC; do Amaral MJ; Castelucci BG; de Sousa LM; de Jesus MB; Consonni SR; Collares-Buzato CB; Mermelstein C; Dietrich S; Alvares LE
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 256():110645. PubMed ID: 34252542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells.
    Cardinali B; Castellani L; Fasanaro P; Basso A; Alemà S; Martelli F; Falcone G
    PLoS One; 2009 Oct; 4(10):e7607. PubMed ID: 19859555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.