These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

589 related articles for article (PubMed ID: 23872057)

  • 1. Highly sensitive and flexible inkjet printed SERS sensors on paper.
    Hoppmann EP; Yu WW; White IM
    Methods; 2013 Oct; 63(3):219-24. PubMed ID: 23872057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection.
    Yu WW; White IM
    Analyst; 2013 Feb; 138(4):1020-5. PubMed ID: 23001259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates.
    Yu WW; White IM
    Analyst; 2013 Jul; 138(13):3679-86. PubMed ID: 23671906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals.
    Wu W; Liu L; Dai Z; Liu J; Yang S; Zhou L; Xiao X; Jiang C; Roy VA
    Sci Rep; 2015 May; 5():10208. PubMed ID: 25974125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel paper rag as 'D-SERS' substrate for detection of pesticide residues at various peels.
    Zhu Y; Li M; Yu D; Yang L
    Talanta; 2014 Oct; 128():117-24. PubMed ID: 25059138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inkjet-Printed Paper Fluidic Devices for Onsite Detection of Antibiotics Using Surface-Enhanced Raman Spectroscopy.
    Restaino SM; Berger A; White IM
    Methods Mol Biol; 2017; 1572():525-540. PubMed ID: 28299709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidic surface enhanced Raman spectroscopy microsystem for sensitive and repeatable on-site detection of chemical contaminants.
    Yazdi SH; White IM
    Anal Chem; 2012 Sep; 84(18):7992-8. PubMed ID: 22924879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution.
    Cheng ML; Tsai BC; Yang J
    Anal Chim Acta; 2011 Dec; 708(1-2):89-96. PubMed ID: 22093349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Batch fabrication of disposable screen printed SERS arrays.
    Qu LL; Li DW; Xue JQ; Zhai WL; Fossey JS; Long YT
    Lab Chip; 2012 Mar; 12(5):876-81. PubMed ID: 22173817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Surface-Enhanced Raman Scattering (SERS) Amplification Factor Obtained with Silver Printed Circuit Boards and the Influence of Phenolic Resins for the Characterization of the Pesticide Thiram.
    Silva de Almeida F; Bussler L; Marcio Lima S; Fiorucci AR; da Cunha Andrade LH
    Appl Spectrosc; 2016 Jul; 70(7):1157-64. PubMed ID: 27279502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple SERS substrates: powerful, portable, and full of potential.
    Betz JF; Yu WW; Cheng Y; White IM; Rubloff GW
    Phys Chem Chem Phys; 2014 Feb; 16(6):2224-39. PubMed ID: 24366393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a heat-induced surface-enhanced Raman scattering sensing method for rapid detection of glutathione in aqueous solutions.
    Huang GG; Han XX; Hossain MK; Ozaki Y
    Anal Chem; 2009 Jul; 81(14):5881-8. PubMed ID: 19518138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polystyrene/Ag nanoparticles as dynamic surface-enhanced Raman spectroscopy substrates for sensitive detection of organophosphorus pesticides.
    Li P; Dong R; Wu Y; Liu H; Kong L; Yang L
    Talanta; 2014 Sep; 127():269-75. PubMed ID: 24913887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inkjet-printed paper-based semiconducting substrates for surface-enhanced Raman spectroscopy.
    Lan L; Hou X; Gao Y; Fan X; Qiu T
    Nanotechnology; 2020 Jan; 31(5):055502. PubMed ID: 31627207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general strategy to prepare SERS active filter membranes for extraction and detection of pesticides in water.
    Fateixa S; Raposo M; Nogueira HIS; Trindade T
    Talanta; 2018 May; 182():558-566. PubMed ID: 29501193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles.
    Li J; Chen L; Lou T; Wang Y
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3936-41. PubMed ID: 21916441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast electrically assisted regeneration of on-chip SERS substrates.
    Meier TA; Poehler E; Kemper F; Pabst O; Jahnke HG; Beckert E; Robitzki A; Belder D
    Lab Chip; 2015 Jul; 15(14):2923-7. PubMed ID: 26040796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver-nanoparticle-based surface-enhanced Raman scattering wiper for the detection of dye adulteration of medicinal herbs.
    Li D; Zhu Q; Lv D; Zheng B; Liu Y; Chai Y; Lu F
    Anal Bioanal Chem; 2015 Aug; 407(20):6031-9. PubMed ID: 26044737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper.
    Yu WW; White IM
    Anal Chem; 2010 Dec; 82(23):9626-30. PubMed ID: 21058689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing.
    Qu LL; Song QX; Li YT; Peng MP; Li DW; Chen LX; Fossey JS; Long YT
    Anal Chim Acta; 2013 Aug; 792():86-92. PubMed ID: 23910972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.