These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23872076)

  • 1. Mini-review: Brazilian fungi diversity for biomass degradation.
    Valencia EY; Chambergo FS
    Fungal Genet Biol; 2013 Nov; 60():9-18. PubMed ID: 23872076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial culture collections as pillars for promoting fungal diversity, conservation and exploitation.
    Sette LD; Pagnocca FC; Rodrigues A
    Fungal Genet Biol; 2013 Nov; 60():2-8. PubMed ID: 23872281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal biodiversity to biotechnology.
    Chambergo FS; Valencia EY
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2567-77. PubMed ID: 26810078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.
    Wang M; Li Z; Fang X; Wang L; Qu Y
    Adv Biochem Eng Biotechnol; 2012; 128():1-24. PubMed ID: 22231654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.
    Garvey M; Klose H; Fischer R; Lambertz C; Commandeur U
    Trends Biotechnol; 2013 Oct; 31(10):581-93. PubMed ID: 23910542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of cellulolytic enzymes by fungi Acrophialophora nainiana and Ceratocystis paradoxa using different carbon sources.
    Barros RR; Oliveira RA; Gottschalk LM; Bon EP
    Appl Biochem Biotechnol; 2010 May; 161(1-8):448-54. PubMed ID: 20174889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential impacts of biomass feedstock production on water resource availability.
    Stone KC; Hunt PG; Cantrell KB; Ro KS
    Bioresour Technol; 2010 Mar; 101(6):2014-25. PubMed ID: 19939667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungal pretreatment of lignocellulosic biomass.
    Wan C; Li Y
    Biotechnol Adv; 2012; 30(6):1447-57. PubMed ID: 22433674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the bioprospecting and biotechnological potential of white-rot and anaerobic Neocallimastigomycota fungi: peptidases, esterases, and lignocellulolytic enzymes.
    da Silva RR; Pedezzi R; Souto TB
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3089-3101. PubMed ID: 28314873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the natural fungal biodiversity of tropical and temperate forests toward improvement of biomass conversion.
    Berrin JG; Navarro D; Couturier M; Olivé C; Grisel S; Haon M; Taussac S; Lechat C; Courtecuisse R; Favel A; Coutinho PM; Lesage-Meessen L
    Appl Environ Microbiol; 2012 Sep; 78(18):6483-90. PubMed ID: 22773628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of research progress on the production of cellulase from filamentous fungi.
    Zhang Z; Xing J; Li X; Lu X; Liu G; Qu Y; Zhao J
    Int J Biol Macromol; 2024 Oct; 277(Pt 4):134539. PubMed ID: 39122065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Industrial exploitation of renewable resources: from ethanol production to bioproducts development].
    Lopes Ferreira N
    J Soc Biol; 2008; 202(3):191-9. PubMed ID: 18980741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and molecular aspects of degradation of plant polysaccharides by fungi: what have we learned from Aspergillus?
    Culleton H; McKie V; de Vries RP
    Biotechnol J; 2013 Aug; 8(8):884-94. PubMed ID: 23674519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme research and applications in biotechnological intensification of biogas production.
    Parawira W
    Crit Rev Biotechnol; 2012 Jun; 32(2):172-86. PubMed ID: 21851320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex regulation of hydrolytic enzyme genes for cellulosic biomass degradation in filamentous fungi.
    Tani S; Kawaguchi T; Kobayashi T
    Appl Microbiol Biotechnol; 2014 Jun; 98(11):4829-37. PubMed ID: 24723293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview on marine cellulolytic enzymes and their potential applications.
    Barzkar N; Sohail M
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6873-6892. PubMed ID: 32556412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass recalcitrance: engineering plants and enzymes for biofuels production.
    Himmel ME; Ding SY; Johnson DK; Adney WS; Nimlos MR; Brady JW; Foust TD
    Science; 2007 Feb; 315(5813):804-7. PubMed ID: 17289988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico analysis of diverse endophytic fungi by using ITS1-5,8S-ITS2 sequences with isolates from various plant families in Brazil.
    Rhoden SA; Garcia A; Azevedo JL; Pamphile JA
    Genet Mol Res; 2013 Apr; 12(2):935-50. PubMed ID: 23613240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioethanol from lignocelluloses: Status and perspectives in Brazil.
    Soccol CR; Vandenberghe LP; Medeiros AB; Karp SG; Buckeridge M; Ramos LP; Pitarelo AP; Ferreira-Leitão V; Gottschalk LM; Ferrara MA; da Silva Bon EP; de Moraes LM; Araújo Jde A; Torres FA
    Bioresour Technol; 2010 Jul; 101(13):4820-5. PubMed ID: 20022746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of Novel Cellulases Using Proteomic Strategies.
    Zoglowek M; Brewer H; Norbeck A
    Methods Mol Biol; 2018; 1796():103-113. PubMed ID: 29856049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.