These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23872086)

  • 21. Specialisation of the venom gland proteome in predatory cone snails reveals functional diversification of the conotoxin biosynthetic pathway.
    Safavi-Hemami H; Siero WA; Gorasia DG; Young ND; Macmillan D; Williamson NA; Purcell AW
    J Proteome Res; 2011 Sep; 10(9):3904-19. PubMed ID: 21707029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High accuracy mass spectrometry comparison of Conus bandanus and Conus marmoreus venoms from the South Central Coast of Vietnam.
    Nguyen B; Molgó J; Lamthanh H; Benoit E; Khuc TA; Ngo DN; Nguyen NT; Millares P; Le Caer JP
    Toxicon; 2013 Dec; 75():148-59. PubMed ID: 23792454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intraspecific variation of venom injected by fish-hunting Conus snails.
    Jakubowski JA; Kelley WP; Sweedler JV; Gilly WF; Schulz JR
    J Exp Biol; 2005 Aug; 208(Pt 15):2873-83. PubMed ID: 16043592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails.
    Dutertre S; Jin AH; Vetter I; Hamilton B; Sunagar K; Lavergne V; Dutertre V; Fry BG; Antunes A; Venter DJ; Alewood PF; Lewis RJ
    Nat Commun; 2014 Mar; 5():3521. PubMed ID: 24662800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unraveling the peptidome of the South African cone snails Conus pictus and Conus natalis.
    Peigneur S; Van Der Haegen A; Möller C; Waelkens E; Diego-García E; Marí F; Naudé R; Tytgat J
    Peptides; 2013 Mar; 41():8-16. PubMed ID: 22776330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intraspecies variability and conopeptide profiling of the injected venom of Conus ermineus.
    Rivera-Ortiz JA; Cano H; Marí F
    Peptides; 2011 Feb; 32(2):306-16. PubMed ID: 21126547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prey Shifts Drive Venom Evolution in Cone Snails.
    Koch TL; Robinson SD; Salcedo PF; Chase K; Biggs J; Fedosov AE; Yandell M; Olivera BM; Safavi-Hemami H
    Mol Biol Evol; 2024 Aug; 41(8):. PubMed ID: 38935574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative Venomics Reveals the Complex Prey Capture Strategy of the Piscivorous Cone Snail Conus catus.
    Himaya SW; Jin AH; Dutertre S; Giacomotto J; Mohialdeen H; Vetter I; Alewood PF; Lewis RJ
    J Proteome Res; 2015 Oct; 14(10):4372-81. PubMed ID: 26322961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Speciation of cone snails and interspecific hyperdivergence of their venom peptides. Potential evolutionary significance of introns.
    Olivera BM; Walker C; Cartier GE; Hooper D; Santos AD; Schoenfeld R; Shetty R; Watkins M; Bandyopadhyay P; Hillyard DR
    Ann N Y Acad Sci; 1999 May; 870():223-37. PubMed ID: 10415486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accelerated proteomic visualization of individual predatory venoms of Conus purpurascens reveals separately evolved predation-evoked venom cabals.
    Himaya SWA; Marí F; Lewis RJ
    Sci Rep; 2018 Jan; 8(1):330. PubMed ID: 29321522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elucidation of the molecular envenomation strategy of the cone snail Conus geographus through transcriptome sequencing of its venom duct.
    Hu H; Bandyopadhyay PK; Olivera BM; Yandell M
    BMC Genomics; 2012 Jun; 13():284. PubMed ID: 22742208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Collaborative Expression: Transcriptomics of Conus virgo Suggests Contribution of Multiple Secretory Glands to Venom Production.
    Fedosov A; Tucci CF; Kantor Y; Farhat S; Puillandre N
    J Mol Evol; 2023 Dec; 91(6):837-853. PubMed ID: 37962577
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution picture of a venom gland transcriptome: case study with the marine snail Conus consors.
    Terrat Y; Biass D; Dutertre S; Favreau P; Remm M; Stöcklin R; Piquemal D; Ducancel F
    Toxicon; 2012 Jan; 59(1):34-46. PubMed ID: 22079299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomic analysis provides insights on venom processing in Conus textile.
    Tayo LL; Lu B; Cruz LJ; Yates JR
    J Proteome Res; 2010 May; 9(5):2292-301. PubMed ID: 20334424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and biosynthetic properties of peptides in cone snail venoms.
    Newcomb R; Gaur S; Bell JR; Cruz L
    Peptides; 1995; 16(6):1007-17. PubMed ID: 8532581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uncovering intense protein diversification in a cone snail venom gland using an integrative venomics approach.
    Biass D; Violette A; Hulo N; Lisacek F; Favreau P; Stöcklin R
    J Proteome Res; 2015 Feb; 14(2):628-38. PubMed ID: 25536169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Venomics Reveals a Non-Compartmentalised Venom Gland in the Early Diverged Vermivorous
    Prashanth JR; Dutertre S; Rai SK; Lewis RJ
    Toxins (Basel); 2022 Mar; 14(3):. PubMed ID: 35324723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Divergent M- and O-superfamily peptides from venom of fish-hunting Conus parius.
    Jimenez EC; Olivera BM
    Peptides; 2010 Sep; 31(9):1678-83. PubMed ID: 20570703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation of Lys-conopressin-G from the venom of the worm-hunting snail, Conus imperialis.
    Nielsen DB; Dykert J; Rivier JE; McIntosh JM
    Toxicon; 1994 Jul; 32(7):845-8. PubMed ID: 7940591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Post-translationally modified neuropeptides from Conus venoms.
    Craig AG; Bandyopadhyay P; Olivera BM
    Eur J Biochem; 1999 Sep; 264(2):271-5. PubMed ID: 10491070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.