These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 23872088)
21. On the extent and role of the small proteome in the parasitic eukaryote Trypanosoma brucei. Ericson M; Janes MA; Butter F; Mann M; Ullu E; Tschudi C BMC Biol; 2014 Feb; 12():14. PubMed ID: 24552149 [TBL] [Abstract][Full Text] [Related]
22. Tsetse fly tolerance to T. brucei infection: transcriptome analysis of trypanosome-associated changes in the tsetse fly salivary gland. Matetovici I; Caljon G; Van Den Abbeele J BMC Genomics; 2016 Nov; 17(1):971. PubMed ID: 27884110 [TBL] [Abstract][Full Text] [Related]
24. Global analysis of protein palmitoylation in African trypanosomes. Emmer BT; Nakayasu ES; Souther C; Choi H; Sobreira TJ; Epting CL; Nesvizhskii AI; Almeida IC; Engman DM Eukaryot Cell; 2011 Mar; 10(3):455-63. PubMed ID: 21193548 [TBL] [Abstract][Full Text] [Related]
25. Deoxyhypusine Modification of Eukaryotic Translation Initiation Factor 5A (eIF5A) Is Essential for Trypanosoma brucei Growth and for Expression of Polyprolyl-containing Proteins. Nguyen S; Leija C; Kinch L; Regmi S; Li Q; Grishin NV; Phillips MA J Biol Chem; 2015 Aug; 290(32):19987-98. PubMed ID: 26082486 [TBL] [Abstract][Full Text] [Related]
26. Chemical Inhibition of Bromodomain Proteins in Insect-Stage African Trypanosomes Perturbs Silencing of the Variant Surface Glycoprotein Repertoire and Results in Widespread Changes in the Transcriptome. Ashby EC; Havens JL; Rollosson LM; Hardin J; Schulz D Microbiol Spectr; 2023 Jun; 11(3):e0014723. PubMed ID: 37097159 [TBL] [Abstract][Full Text] [Related]
27. The genome of the African trypanosome Trypanosoma brucei. Berriman M; Ghedin E; Hertz-Fowler C; Blandin G; Renauld H; Bartholomeu DC; Lennard NJ; Caler E; Hamlin NE; Haas B; Böhme U; Hannick L; Aslett MA; Shallom J; Marcello L; Hou L; Wickstead B; Alsmark UC; Arrowsmith C; Atkin RJ; Barron AJ; Bringaud F; Brooks K; Carrington M; Cherevach I; Chillingworth TJ; Churcher C; Clark LN; Corton CH; Cronin A; Davies RM; Doggett J; Djikeng A; Feldblyum T; Field MC; Fraser A; Goodhead I; Hance Z; Harper D; Harris BR; Hauser H; Hostetler J; Ivens A; Jagels K; Johnson D; Johnson J; Jones K; Kerhornou AX; Koo H; Larke N; Landfear S; Larkin C; Leech V; Line A; Lord A; Macleod A; Mooney PJ; Moule S; Martin DM; Morgan GW; Mungall K; Norbertczak H; Ormond D; Pai G; Peacock CS; Peterson J; Quail MA; Rabbinowitsch E; Rajandream MA; Reitter C; Salzberg SL; Sanders M; Schobel S; Sharp S; Simmonds M; Simpson AJ; Tallon L; Turner CM; Tait A; Tivey AR; Van Aken S; Walker D; Wanless D; Wang S; White B; White O; Whitehead S; Woodward J; Wortman J; Adams MD; Embley TM; Gull K; Ullu E; Barry JD; Fairlamb AH; Opperdoes F; Barrell BG; Donelson JE; Hall N; Fraser CM; Melville SE; El-Sayed NM Science; 2005 Jul; 309(5733):416-22. PubMed ID: 16020726 [TBL] [Abstract][Full Text] [Related]
28. Proteomic analysis of arginine methylation sites in human cells reveals dynamic regulation during transcriptional arrest. Sylvestersen KB; Horn H; Jungmichel S; Jensen LJ; Nielsen ML Mol Cell Proteomics; 2014 Aug; 13(8):2072-88. PubMed ID: 24563534 [TBL] [Abstract][Full Text] [Related]
29. Sphingosine Kinase Regulates Microtubule Dynamics and Organelle Positioning Necessary for Proper G1/S Cell Cycle Transition in Trypanosoma brucei. Pasternack DA; Sharma AI; Olson CL; Epting CL; Engman DM mBio; 2015 Oct; 6(5):e01291-15. PubMed ID: 26443455 [TBL] [Abstract][Full Text] [Related]
30. An arginine-glycine-rich RNA binding protein impacts the abundance of specific mRNAs in the mitochondria of Trypanosoma brucei. McAdams NM; Ammerman ML; Nanduri J; Lott K; Fisk JC; Read LK Eukaryot Cell; 2015 Feb; 14(2):149-57. PubMed ID: 25480938 [TBL] [Abstract][Full Text] [Related]
31. A novel protein targeting domain directs proteins to the anterior cytoplasmic face of the flagellar pocket in African trypanosomes. Hill KL; Hutchings NR; Russell DG; Donelson JE J Cell Sci; 1999 Sep; 112 Pt 18():3091-101. PubMed ID: 10462525 [TBL] [Abstract][Full Text] [Related]
32. Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics. Gadelha C; Zhang W; Chamberlain JW; Chait BT; Wickstead B; Field MC Mol Cell Proteomics; 2015 Jul; 14(7):1911-26. PubMed ID: 25931509 [TBL] [Abstract][Full Text] [Related]
33. The phosphoarginine energy-buffering system of trypanosoma brucei involves multiple arginine kinase isoforms with different subcellular locations. Voncken F; Gao F; Wadforth C; Harley M; Colasante C PLoS One; 2013; 8(6):e65908. PubMed ID: 23776565 [TBL] [Abstract][Full Text] [Related]
36. Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. Urbaniak MD; Martin DM; Ferguson MA J Proteome Res; 2013 May; 12(5):2233-44. PubMed ID: 23485197 [TBL] [Abstract][Full Text] [Related]
37. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Larsen SC; Sylvestersen KB; Mund A; Lyon D; Mullari M; Madsen MV; Daniel JA; Jensen LJ; Nielsen ML Sci Signal; 2016 Aug; 9(443):rs9. PubMed ID: 27577262 [TBL] [Abstract][Full Text] [Related]
38. Introducing histone modification in trypanosomes. Horn D Trends Parasitol; 2007 Jun; 23(6):239-42. PubMed ID: 17433777 [TBL] [Abstract][Full Text] [Related]
39. Role of the Trypanosoma brucei HEN1 family methyltransferase in small interfering RNA modification. Shi H; Barnes RL; Carriero N; Atayde VD; Tschudi C; Ullu E Eukaryot Cell; 2014 Jan; 13(1):77-86. PubMed ID: 24186950 [TBL] [Abstract][Full Text] [Related]
40. Novel Effects of Lapatinib Revealed in the African Trypanosome by Using Hypothesis-Generating Proteomics and Chemical Biology Strategies. Guyett PJ; Behera R; Ogata Y; Pollastri M; Mensa-Wilmot K Antimicrob Agents Chemother; 2017 Feb; 61(2):. PubMed ID: 27872081 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]