These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 23872153)

  • 21. Effects of acrylamide, latrunculin, and nocodazole on intracellular transport and cytoskeletal organization in melanophores.
    Aspengren S; Wielbass L; Wallin M
    Cell Motil Cytoskeleton; 2006 Jul; 63(7):423-36. PubMed ID: 16671098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transition to superdiffusive behavior in intracellular actin-based transport mediated by molecular motors.
    Bruno L; Levi V; Brunstein M; Despósito MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011912. PubMed ID: 19658734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynactin is required for bidirectional organelle transport.
    Deacon SW; Serpinskaya AS; Vaughan PS; Lopez Fanarraga M; Vernos I; Vaughan KT; Gelfand VI
    J Cell Biol; 2003 Feb; 160(3):297-301. PubMed ID: 12551954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Statistics of active transport in Xenopus melanophores cells.
    Snezhko A; Barlan K; Aranson IS; Gelfand VI
    Biophys J; 2010 Nov; 99(10):3216-23. PubMed ID: 21081069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The dynamic properties of intermediate filaments during organelle transport.
    Chang L; Barlan K; Chou YH; Grin B; Lakonishok M; Serpinskaya AS; Shumaker DK; Herrmann H; Gelfand VI; Goldman RD
    J Cell Sci; 2009 Aug; 122(Pt 16):2914-23. PubMed ID: 19638410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A role for spectrin in dynactin-dependent melanosome transport in Xenopus laevis melanophores.
    Aspengren S; Wallin M
    Pigment Cell Res; 2004 Jun; 17(3):295-301. PubMed ID: 15140076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Teamwork in microtubule motors.
    Mallik R; Rai AK; Barak P; Rai A; Kunwar A
    Trends Cell Biol; 2013 Nov; 23(11):575-82. PubMed ID: 23877011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New insights into melanosome transport in vertebrate pigment cells.
    Aspengren S; Hedberg D; Sköld HN; Wallin M
    Int Rev Cell Mol Biol; 2009; 272():245-302. PubMed ID: 19121820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells.
    Pallavicini C; Levi V; Wetzler DE; Angiolini JF; Benseñor L; Despósito MA; Bruno L
    Biophys J; 2014 Jun; 106(12):2625-35. PubMed ID: 24940780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transport properties of melanosomes along microtubules interpreted by a tug-of-war model with loose mechanical coupling.
    Bouzat S; Levi V; Bruno L
    PLoS One; 2012; 7(8):e43599. PubMed ID: 22952716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vesicle transport: the role of actin filaments and myosin motors.
    DePina AS; Langford GM
    Microsc Res Tech; 1999 Oct; 47(2):93-106. PubMed ID: 10523788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myosin-Va and dynamic actin oppose microtubules to drive long-range organelle transport.
    Evans RD; Robinson C; Briggs DA; Tooth DJ; Ramalho JS; Cantero M; Montoliu L; Patel S; Sviderskaya EV; Hume AN
    Curr Biol; 2014 Aug; 24(15):1743-50. PubMed ID: 25065759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Actin dynamics is essential for myosin-based transport of membrane organelles.
    Semenova I; Burakov A; Berardone N; Zaliapin I; Slepchenko B; Svitkina T; Kashina A; Rodionov V
    Curr Biol; 2008 Oct; 18(20):1581-6. PubMed ID: 18951026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro reconstitution of fish melanophore pigment aggregation.
    Nilsson H; Steffen W; Palazzo RE
    Cell Motil Cytoskeleton; 2001 Jan; 48(1):1-10. PubMed ID: 11124706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Melatonin, melatonin receptors and melanophores: a moving story.
    Sugden D; Davidson K; Hough KA; Teh MT
    Pigment Cell Res; 2004 Oct; 17(5):454-60. PubMed ID: 15357831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of microtubule-based transport by MAP4.
    Semenova I; Ikeda K; Resaul K; Kraikivski P; Aguiar M; Gygi S; Zaliapin I; Cowan A; Rodionov V
    Mol Biol Cell; 2014 Oct; 25(20):3119-32. PubMed ID: 25143402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The melanosome as a model to study organelle motility in mammals.
    Barral DC; Seabra MC
    Pigment Cell Res; 2004 Apr; 17(2):111-8. PubMed ID: 15016299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Semi-automated analysis of organelle movement and membrane content: understanding rab-motor complex transport function.
    Hume AN; Wilson MS; Ushakov DS; Ferenczi MA; Seabra MC
    Traffic; 2011 Dec; 12(12):1686-701. PubMed ID: 21920004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Actin motility: staying on track takes a little more effort.
    Ehrenberg M; McGrath JL
    Curr Biol; 2004 Nov; 14(21):R931-2. PubMed ID: 15530387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The cytoskeleton in fish melanophore melanosome positioning.
    Sköld HN; Aspengren S; Wallin M
    Microsc Res Tech; 2002 Sep; 58(6):464-9. PubMed ID: 12242703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.